991 resultados para ND-YAG
Resumo:
To assess clinical and microbiological outcomes of an Er:YAG laser in comparison with sonic debridement in the treatment of persistent periodontal pockets in a prospective randomized controlled multicentre study design.
Resumo:
Using a cost-efficient climate model, the effect of changes in overturning circulation on neodymium isotopic composition,ϵNd, is systematically examined for the first time. Idealized sequences of abrupt climate changes are induced by the application of periodic freshwater fluxes to the North Atlantic (NA) and the Southern Ocean (SO), thus mainly affecting either the formation of North Atlantic Deep Water (NADW) or Antarctic Bottom Water (AABW). Variations in ϵNd reflect weakening and strengthening of the formation of NADW and AABW, changes in ϵNdof end-members are relatively small. Relationships betweenϵNd and the strength of NADW or AABW are more pronounced for AABW than for NADW. Atlantic patterns of variations in ϵNd systematically differ between NA and SO experiments. Additionally, the signature of changes in ϵNd in the Atlantic and the Pacific is alike in NA but opposite in SO experiments. Discrimination between NA and SO experiments is therefore possible based on the Atlantic pattern of variations in ϵNd and the contrariwise behavior of ϵNd in the Atlantic and the Pacific. In further experiments we examined the effect of variations in magnitudes of particle export fluxes. Within the examined range, and although settling particles represent the only sink of Nd, their effects on ϵNd are relatively small. Our results confirm the large potential of ϵNd as a paleocirculation tracer but also indicate its limitations of quantitative reconstructions of changes in the Atlantic Meridional Ocean Circulation.
Resumo:
It has been argued that past changes in the sources of Nd could hamper the use of the Nd isotopic composition (ϵNd) as a proxy for past changes in the overturning of deep water masses. Here we reconsider uncertainties associated with ϵNd in seawater due to potential regional to global scale changes in the sources of Nd by applying a modeling approach. For illustrative purposes we describe rather extreme changes in the magnitude of source fluxes, their isotopic composition or both. We find that the largest effects on ϵNd result from changes in the boundary source. Considerable changes also result from variations in the magnitude or ϵNd of dust and rivers but are largely constrained to depths shallower than 1 km, except if they occur in or upstream of regions where deep water masses are formed. From these results we conclude that changes in Nd sources have the potential to affect ϵNd. However, substantial changes are required to generate large-scale changes inϵNd in deep water that are similar in magnitude to those that have been reconstructed from sediment cores or result from changes in meridional overturning circulation in model experiments. Hence, it appears that a shift in ϵNdcomparable to glacial-interglacial variations is difficult to obtain by changes in Nd sources alone, but that more subtle variations can be caused by such changes and must be interpreted with caution.
Resumo:
The volcanic rocks of the Rhön area (Central European Volcanic Province, Germany) belong to a moderately alkali basaltic suite that is associated with minor tephriphonolites, phonotephrites, tephrites, phonolites and trachytes. Based on isotope sytematics (87Sr/86Sr: 0.7033–0.7042; 143Nd/144Nd: 0.51279–0.51287; 206Pb/204Pb: 19.1–19.5), the inferred parental magmas formed by variable degrees of partial melting of a common asthenospheric mantle source (EAR: European Asthenospheric Reservoir of Cebriá and Wilson, 1995). Tephrites, tephriphonolites, phonotephrites, phonolites and trachytes show depletions and enrichments in some trace elements (Sr, Ba, Nb, Zr, Y) indicating that they were generated by broadly similar differentiation processes that were dominated by fractionation of olivine, clinopyroxene, amphibole, apatite and titaniferous magnetite ± plagioclase ± alkalifeldspar. The fractionated samples seem to have evolved by two distinct processes. One is characterized by pure fractional crystallization indicated by increasing Nb (and other incompatible trace element) concentrations at virtually constant 143Nd/144Nd ~ 0.51280 and 87Sr/86Sr ~ 0.7035. The other process involved an assimilation–fractional crystallization (AFC) process where moderate assimilation to crystallization rates produced evolved magmas characterized by higher Nb concentrations at slightly lower 143Nd/144Nd down to 0.51275. Literature data for some of the evolved rocks show more variable 87Sr/86Sr ranging from 0.7037 to 0.7089 at constant 143Nd/144Nd ~ 0.51280. These features may result from assimilation of upper crustal rocks by highly differentiated low-Sr (< 100 ppm Sr) lavas. However, based on the displacement of the differentiated rocks from this study towards lower 143Nd/144Nd ratios and modeled AFC processes in 143Nd/144Nd vs. 87Sr/86Sr and 207Pb/204Pb vs. 143Nd/144Nd space assimilation of lower crustal rocks seems more likely. The view that assimilation of lower crustal rocks played a role is confirmed by high-precision double-spike Pb isotope data that reveal higher 207Pb/204Pb ratios (15.62–15.63) in the differentiated rocks than in the primitive basanites (15.58–15.61). This is compatible with incorporation of radiogenic Pb from lower crustal xenoliths (207Pb/204Pb: 15.63–15.69) into the melt. However, 206Pb/204Pb ratios are similar for the differentiated rocks (19.13–19.35) and the primitive basanites (19.12–19.55) implying that assimilation involved an ancient crustal end member with a higher U/Pb ratio than the mantle source of the basanites. In addition, alteration-corrected δ18O values of the differentiated rocks range from c. 5 to 7‰ which is the same range as observed in the primitive alkaline rocks. This study confirms previous interpretations that highlighted the role of AFC processes in the evolution of alkaline volcanic rocks in the Rhön area of the Central European Volcanic Province.
Resumo:
This study investigates processes of sediment generation in equatorial central Africa. An original, complete and integrated mineralogical-geochemical database on silt-sized sediments derived from different parent rocks (basalt, granite, gneiss, metapsammite, sandstone) along the East African Rift from 5°S in Tanzania to 5°N in Sudan is presented and used to assess the incidence of diverse factors controlling sediment composition (source-rock lithology, geomorphology, hydraulic sorting, grain size, recycling), with particular emphasis on chemical weathering.
Resumo:
The 146Sm–142Nd system plays a central role in tracing the silicate differentiation of the Earth prior to 4.1 Ga. After this time, given its initial abundance, the 146Sm can be considered to be extinct. Upadhyay et al. (2009) reported unexpected negative 142Nd anomalies in 1.48 Ga rocks of the Khariar nepheline syenite complex (India) and inferred that an early enriched, low-Sm/Nd reservoir must have contributed to the mantle source rocks of the Khariar complex. As 146Sm had been effectively extinct for about 2.6 billion years before the crystallisation of the Khariar samples, this Nd signature should have remained isolated from the convective mantle for at least that long. It was thus suggested that the source rock of Khariar samples had been sequestered in the lithospheric root of the Indian craton. Using a different chemical separation method, and a different Thermal Ionization Mass Spectrometry (TIMS) analysis protocol, the present study attempted to replicate these negative 142Nd anomalies, but none were found. To determine which data set is correct, we investigated three possible sources of bias between them: imperfect cancellation of Faraday collector efficiencies during multidynamic TIMS analysis, rapid sample fractionation between the sequential measurement of 146Nd/144Nd and 142Nd/144Nd, and non-exponential law behaviour resulting from so-called “domain mixing.” Incomplete cancellation of collector efficiencies was found unlikely to cause resolvable biases at the estimated level of variation among collector efficiencies. Even in the case of highly variable efficiency and resolvable biases, there is no reason to suspect that they would reproducibly affect only four rocks out of 10 analysed by Upadhyay et al. (2009). Although domain mixing may explain apparent “reverse” fractionation trends observed in some TIMS analyses, it cannot be the cause of the apparent negative anomalies in the study of Upadhyay et al. (2009). It was determined that rapid mass fractionation during the course of a multidynamic TIMS analysis can bias all measured Nd ratios. After applying an approximate correction for this effect, only one rock from Upadhyay et al. (2009) retained an apparent negative 142Nd anomaly. This, in conjunction with our new, anomaly-free data set measured at fractionation rates too low to cause bias, leads to the conclusion that the anomalies reported by Upadhyay et al. (2009) are a subtle and reproducible analytical artefact. The absence of negative 142Nd anomalies in these rocks relaxes the need for a mechanism (other than crust formation) that can isolate a Nd reservoir from the convective mantle for billions of years.
Resumo:
The neodymium (Nd) isotopic composition (Nd) of seawater is a quasi-conservative tracer of water mass mixing and is assumed to hold great potential for paleoceanographic studies. Here we present a comprehensive approach for the simulation of the two neodymium isotopes 143Nd, and 144Nd using the Bern3D model, a low resolution ocean model. The high computational efficiency of the Bern3D model in conjunction with our comprehensive approach allows us to systematically and extensively explore the sensitivity of Nd concentrations and Nd to the parametrisation of sources and sinks. Previous studies have been restricted in doing so either by the chosen approach or by computational costs. Our study thus presents the most comprehensive survey of the marine Nd cycle to date. Our model simulates both Nd concentrations as well as Nd in good agreement with observations. Nd covaries with salinity, thus underlining its potential as a water mass proxy. Results confirm that the continental margins are required as a Nd source to simulate Nd concentrations and Nd consistent with observations. We estimate this source to be slightly smaller than reported in previous studies and find that above a certain magnitude its magnitude affects Nd only to a small extent. On the other hand, the parametrisation of the reversible scavenging considerably affects the ability of the model to simulate both, Nd concentrations and Nd. Furthermore, despite their small contribution, we find dust and rivers to be important components of the Nd cycle. In additional experiments, we systematically varied the diapycnal diffusivity as well as the Atlantic-to-Pacific freshwater flux to explore the sensitivity of Nd concentrations and its isotopic signature to the strength and geometry of the overturning circulation. These experiments reveal that Nd concentrations and Nd are comparatively little affected by variations in diapycnal diffusivity and the Atlantic-to-Pacific freshwater flux. In contrast, an adequate representation of Nd sources and sinks is crucial to simulate Nd concentrations and Nd consistent with observations. The good agreement of our results with observations paves the way for the evaluation of the paleoceanographic potential of Nd in further model studies.