790 resultados para N-3 LONG-CHAIN POLYUNSATURATED FATTY ACIDS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen exposure has a large impact on lipid biomarker preservation in surface sediments and may affect the application of organic proxies used for reconstructing past environmental conditions. To determine its effect on long chain alkyl diol and keto-ol based proxies, the distributions of these lipids was studied in nine surface sediments from the Murray Ridge in the Arabian Sea obtained from varying water depths (900 to 3000 m) but in close lateral proximity and, therefore, likely receiving a similar particle flux. Due to substantial differences in bottom water oxygen concentration (<3 to 77 µmol/L) and sedimentation rate, substantial differences exist in the time the biomarker lipids are exposed to oxygen in the sediment. Long chain alkyl diol and keto-ol concentrations in the surface sediments (0-0.5 cm) decreased progressively with increasing oxygen exposure time, suggesting increased oxic degradation. The 1,15-keto-ol/diol ratio (DOXI) increased slightly with oxygen exposure time as diols had apparently slightly higher degradation rates than keto-ols. The ratio of 1,14- vs. 1,13- or 1,15-diols, used as upwelling proxies, did not show substantial changes. However, the C30 1,15-diol exhibited a slightly higher degradation rate than C28 and C30 1,13-diols, and thus the Long chain Diol Index (LDI), used as sea surface temperature proxy, showed a negative correlation with the maximum residence time in the oxic zone of the sediment, resulting in ca. 2-3.5 °C change, when translated to temperature. The UK'37 index did not show significant changes with increasing oxygen exposure. This suggests that oxic degradation may affect temperature reconstructions using the LDI in oxic settings and where oxygen concentrations have varied substantially over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[GRAPHICS] Oxidation of tetradecanoic and hexadecanoic acids by cytochrome P450(Biol) (CYP107H1) produces mainly the 11-, 12-, and 13-hydroxy C-14 fatty acids and the 11- to 15-hydroxy C-16 fatty acids, respectively. In contrast to previous reports, terminal hydroxylation is not observed. The enantiospecificity of fatty acid hydroxylation by P450(Biol) was also determined, and the enzyme was shown to be moderately selective for production of the (R)-alcohols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatty acids (FAs) are relatively small, hydrophobic and highly mobile molecular structures with vital biological functions and a ubiquitous distribution. Surprisingly, however, they can be rendered immunogenic. We have synthesised a novel immunogen in which dicarboxylic linoleic acid was conjugated to a carrier protein. Dicarboxylic fatty acids (DCA) differ from their normal counterparts only by their possession of a carboxyl group at each end of the molecule. When conjugated to proteins as haptens, they are, therefore, presented to the immune system with a free carboxyl group at the distal end, instead of a methyl group. Polyclonal IgG antibodies raised in response to this unique immunogen could bind not only conjugated hapten with high affinity, but also the equivalent free FA in mono and dicarboxylic form. Similar conjugates constructed from normal FAs produced much weaker antibody responses and could scarcely be considered antigenic at all. The cross-reactivities of the anti-DCA antibodies with FA variants differing in the number, position and configuration of their double bonds showed that the antibody paratope (binding site) was structured to accommodate the hapten in a way that depended on the precise shape of the acyl chain. We suggest that FAs become much more effective as B-cell epitopes when presented with their hydrophilic carboxyl group exposed on the surface of immunogenic conjugates. This type of epitope is determined by the particular double bond pattern of the unsaturated acyl chain, as well as the polar head group. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanism of aliphatic hydroxylation by cytochromes P450 has been the subject of intense debate with several proposed mechanistic alternatives. Various cyclopropyl containing compounds (radical clocks), which can produce both unrearranged and ring opened products upon oxidation, have been key tools in these investigations. In this study, we introduce several cyclopropyl containing fatty acids 1a-4a with which to probe the mechanism of P450s capable of fatty acid hydroxylation. The probes are shown to be capable of distinguishing radical from cationic intermediates due to the rapid equilibration of isomeric cyclopropyl cations. Ring opening of a radical intermediate in an oxidative transformation is expected to yield a single rearranged alcohol, whereas a cation isomerizes prior to ring opening, leading to two isomeric homoallylic alcohols. Oxidation of these probes by P450(BM3) and P450(Biol) gives results consistent with a radical but not a cationic intermediate in fatty acid hydroxylation by these enzymes. Quantitation of the unrearranged and ring opened products gives remarkably homogeneous rates for oxygen rebound of (2-3) x 10(10) s(-1). The effects of introduction of a cyclopropane ring into a fatty acid upon the regiochemistry of hydroxylation are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Caveolins are a crucial component of plasma membrane (PM) caveolae but have also been localized to intracellular compartments, including the Golgi complex and lipid bodies. Mutant caveolins associated with human disease show aberrant trafficking to the PM and Golgi accumulation. We now show that the Golgi pool of mainly newly synthesized protein is detergent-soluble and predominantly in a monomeric state, in contrast to the surface pool. Caveolin at the PM is not recognized by specific caveolin antibodies unless PM cholesterol is depleted. Exit from the Golgi complex of wild-type caveolin-1 or -3, but not vesicular stomatitis virus-G protein, is modulated by changing cellular cholesterol levels. In contrast, a muscular dystrophy-associated mutant of caveolin-3, Cav3P104L, showed increased accumulation in the Golgi complex upon cholesterol treatment. In addition, we demonstrate that in response to fatty acid treatment caveolin can follow a previously undescribed pathway from the PM to lipid bodies and can move from lipid bodies to the PM in response to removal of fatty acids. The results suggest that cholesterol is a rate-limiting component for caveolin trafficking. Changes in caveolin flux through the exocytic pathway can therefore be an indicator of cellular cholesterol and fatty acid levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose Dry eye is a common complaint often encountered in optometric practice. However, it is a difficult condition to treat as clinical signs do not always correlate with patient symptoms. Essential fatty acids (EFA), particularly omega-3 EFA, may be effective in dealing with the underlying causes. Methods A literature review was carried out on the PubMed, ScienceDirect and Ovid databases. Searches included keywords such as ‘dry eye’, ‘essential fatty acids’ and ‘nutrition’ to find articles relating to the treatment of dry eye syndrome (DES) with omega-3 EFAs. Results Omega-3 and -6 EFAs need to be consumed together within a reasonable ratio to be effective. Currently, typical diets in developed countries lack omega-3 EFA and this results in an overexposure to omega-6. Omega-3 supplementation has an anti-inflammatory effect, inhibiting creation of omega-6 prostaglandin precursors. Omega-3 EFAs also demonstrate anti-inflammatory action in the lacrimal gland preventing apoptosis of the secretory epithelial cells. Supplementation clears meibomitis, allowing a thinner, more elastic lipid layer to protect the tear film and cornea. Conclusion Dietary supplementation of omega-3 EFA has already proven to be effective in coronary heart disease and arthritis. Safety is not a concern as it works synergistically with omega-6 in the body. Evidence suggests that supplementation with omega-3 EFA may be beneficial in the treatment and prevention of DES.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the existence of halogenated lipids in lower organisms has been known for many years, it is only since the 1990s that interest in their occurrence in mammalian systems has developed. Chlorinated (and other halogenated) lipids can arise from oxidation by hypohalous acids, such as HOCl, which are products of the phagocytic enzyme myeloperoxidase and are generated during inflammation. The major species of chlorinated lipids investigated to date are chlorinated sterols, fatty acid and phospholipid chlorohydrins, and a-chloro fatty aldehydes. While all of these chlorinated lipids have been shown to be produced in model systems from lipoproteins to cells subjected to oxidative stress, as yet only a-chloro fatty aldehydes, such as 2-chlorohexadecanal, have been detected in clinical samples or animal models of disease. a-Chloro fatty aldehydes and chlorohydrins have been found to have a number of potentially pro-inflammatory effects ranging from toxicity to inhibition of nitric oxide synthesis and upregulation of vascular adhesion molecules. Thus evidence is building for a role of chlorinated lipids in inflammatory disease, although much more research is required to establish the contributions of specific compounds in different disease pathologies. Preventing chlorinated lipid formation and indeed other HOCl-induced damage, via the inhibition of myeloperoxidase, is an area of growing interest and may lead in the future to antimyeloperoxidase-based antiinflammatory therapy. However, other chlorinated lipids, such as punaglandins, have beneficial effects that could offer novel therapies for cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The degree of reliance of newborn sharks on energy reserves from maternal resource allocation and the timescales over which these animals develop foraging skills are critical factors towards understanding the ecological role of top predators in marine ecosystems. We used muscle tissue stable carbon isotopic composition and fatty acid analysis of bull sharks Carcharhinus leucas to investigate early-life feeding ecology in conjunction with maternal resource dependency. Values of δ13C of some young-of-the-year sharks were highly enriched, reflecting inputs from the marine-based diet and foraging locations of their mothers. This group of sharks also contained high levels of the 20:3ω9 fatty acid, which accumulates during periods of essential fatty acid deficiency, suggesting inadequate or undeveloped foraging skills and possible reliance on maternal provisioning. A loss of maternal signal in δ13C values occurred at a length of approximately 100 cm, with muscle tissue δ13C values reflecting a transition from more freshwater/estuarine-based diets to marine-based diets with increasing length. Similarly, fatty acids from sharks >100 cm indicated no signs of essential fatty acid deficiency, implying adequate foraging. By combining stable carbon isotopes and fatty acids, our results provided important constraints on the timing of the loss of maternal isotopic signal and the development of foraging skills in relation to shark size and imply that molecular markers such as fatty acids are useful for the determination of maternal resource dependency.