966 resultados para Muscle Contractile Properties
Resumo:
Aim of the study was to find out whether consumption of quercetin (QC), an abundant flavonoid in the human diet, protects against DNA damage caused by exposure to organic mercury. Therefore, rats were treated orally with methylmercury (MeHg) and the flavonoid with doses that reflect the human exposure. The animals received MeHg (30 mu g/kg/bw/day), QC (0.5-50 mg/kg/bw/day), or combinations of both over 45 days. Subsequently, the glutathione levels (GSH) and the activities of glutathione peroxidase (GPx) and catalase (CAT) were determined, and DNA damage was measured in hepatocytes and peripheral leukocytes in single cell gel electrophoresis assays. MeHg decreased the concentration of GSH and the activity of GPx by 17 and 12%, respectively and caused DNA damage to liver and blood cells, while with QC no such effects were seen. When the flavonoid was given in combination with MeHg, the intermediate and the highest concentrations (5.0 and 50.0 mg/kg/bw/day) were found to cause DNA protection; DNA migration was reduced by 54 and 65% in the hepatocytes and by 27 and 36% in the leukocytes; furthermore, the reduction in GSH and GPx levels caused by MeHg treatment was restored. In summary, our results indicate that consumption of QC-rich foods may protect Hg-exposed humans against the adverse health effects of the metal.
Resumo:
Solubility represents a limiting factor when testing new compounds in animal experiments, since solubilizing agents generally have pharmacological effects that can interfere with the studied substance. Vehicles are commonly used for solubilizing certain substances including apolar and polar extracts obtained from medicinal plants. In this study, fifteen vehicles were investigated on mice neuromuscular preparations. A known in vitro neuroblocker myotoxin from Bothrops jararacussu venom, bothropstoxin-I, was used as a pharmacological tool for testing the medicinal potential of apolar and polar extracts (hexane, dichloromethane, ethyl acetate and methanol) obtained from Casearia sylvestris Sw. leaves, which in turn were used for testing their solubility and concomitantly to produce no change on basal response of indirectly stimulated mouse phrenic nerve-diaphragm preparations. Taken together in vitro biological system and extracts solubility, our results showed that dimethyl sulphoxide and polyethylene glycol 400 were the better vehicles, and methanol extract solubilized on PEG 400 was the only one able to act against the paralysis induced by the myotoxin. Thus, this study points out to the relevant role that vehicles exhibit for extracting the potential pharmacological activity of plants in a given test system.
Resumo:
L-Amino acid oxidases (LAAOs, EC 1.4.3.2) are flavoenzymes that catalyze the stereospecific oxidative deamination of an L-amino acid substrate to the corresponding a-ketoacid with hydrogen peroxide and ammonia production. The present work describes the first report on the antiviral (Dengue virus) and antiprotozoal (trypanocidal and leishmanicide) activities of a Bothrops jararaca L-amino acid oxidase (BjarLAAO-I) and identify its cDNA sequence. Antiparasite effects were inhibited by catalase, suggesting that they are mediated by H(2)O(2) production. Cells infected with DENV-3 virus previously treated with BjarLAAO-I, showed a decrease in viral titer (13-83-fold) when compared with cells infected with untreated viruses. Untreated and treated promastigotes (T. cruzi and L. amazonensis) were observed by transmission electron microscopy with different degrees of damage. Its complete cDNA sequence, with 1452 bp, encoded an open reading frame of 484 amino acid residues with a theoretical molecular weight and pl of 54,771.8 and 5.7, respectively. The cDNA-deduced amino acid sequence of BjarLAAO shows high identity to LAAOs from other snake venoms. Further investigations will be focused on the related molecular and functional correlation of these enzymes. Such a study should provide valuable information for the therapeutic development of new generations of microbicidal drugs. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Many medicinal plants have been recommended for the treatment of snakebites. The aqueous extracts prepared from the leaves of Schizolobium parahyba (a plant found in Mata Atlantica in Southeastern Brazil) were assayed for their ability to inhibit some enzymatic and biological activities induced by Bothropspauloensis and Crotalus durissus terrificus venoms as well as by their isolated toxins neuwiedase (metalloproteinase), BnSP-7 (basic Lys49 PLA(2)) and CB (PLA(2) from crotoxin complex). Phospholipase A(2), coagulant, fibrinogenolytic, hemorrhagic and myotoxic activities induced by R pauloensis and C. d. terrificus venoms, as well as by their isolated toxins were significantly inhibited when different amounts of S. parahyba were incubated previously with these venoms and toxins before assays. However, when S. parahyba was administered at the same route as the venoms or toxins injections, the tissue local damage, such as hemorrhage and myotoxicity was only partially inhibited. The study also evaluated the inhibitory effect of S. parahyba upon the spreading of venom proteins from the injected area into the systemic circulation. The neutralization of systemic alterations induced by i.m. injection of R pauloensis venom was evaluated by measuring platelet and plasma fibrinogen levels which were significantly maintained when S. parahyba extract inoculation occurred at the same route after R pauloensis venom injection. In conclusion, the observations confirmed that the aqueous extract of S. parahyba possesses potent snake venom neutralizing properties. It may be used as an alternative treatment to serum therapy and as a rich source of potential inhibitors of toxins involved in several physiopathological human and animal diseases. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
The present article describes an L-amino acid oxidase from Bothrops atrox snake venom as with antiprotozoal activities in Trypanosoma cruzi and in different species of Leishmania (Leishmania braziliensis, Leishmania donovani and Leishmania major). Leishmanicidal effects were inhibited by catalase, suggesting that they are mediated by H(2)O(2) production. Leishmania spp. cause a spectrum of diseases, ranging from self-healing ulcers to disseminated and often fatal infections, depending on the species involved and the host`s immune response. BatroxLAAO also displays bactericidal activity against both Gram-positive and Gram-negative bacteria. The apoptosis induced by BatroxLAAO on HL-60 cell lines and PBMC cells was determined by morphological cell evaluation using a mix of fluorescent dyes. As revealed by flow cytometry analysis, suppression of cell proliferation with BatroxLAAO was accompanied by the significant accumulation of cells in the G0/G1 phase boundary in HL-60 cells. BatroxLAAO at 25 mu g/mL and 50 mu g/mL blocked G0-G1 transition, resulting in G0/G1 phase cell cycle arrest, thereby delaying the progression of cells through S and G2/M phase in HL-60 cells. This was shown by an accentuated decrease in the proportion of cells in S phase, and the almost absence of G2/M phase cell population. BatroxLAAO is an interesting enzyme that provides a better understanding of the ophidian envenomation mechanism, and has biotechnological potential as a model for therapeutic agents. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
Galectin-1 (Gal-1) is important in immune function and muscle regeneration, but its expression and localization in adult tissues and primary leukocytes remain unclear. To address this, we generated a specific monoclonal antibody against Gal-1, termed alpha hGal-1, and defined a sequential peptide epitope that it recognizes, which is preserved in human and porcine Gal-1, but not in murine Gal-1. Using alpha hGal-1, we found that Gal-1 is expressed in a wide range of porcine tissues, including striated muscle, liver, lung, brain, kidney, spleen, and intestine. In most types of cells, Gal-1 exhibits diffuse cytosolic expression, but in cells within the splenic red pulp, Gal-1 showed both cytosolic and nuclear localization. Gal-1 was also expressed in arterial walls and exhibited prominent cytosolic and nuclear staining in cultured human endothelial cells. However, human peripheral leukocytes and promyelocytic HL60 cells lack detectable Gal-1 and also showed very low levels of Gal-1 mRNA. In striking contrast, Gal-1 exhibited an organized cytosolic staining pattern within striated muscle tissue of cardiac and skeletal muscle and colocalized with sarcomeric actin on I bands. These results provide insights into previously defined roles for Gal-1 in inflammation, immune regulation and muscle biology.
Resumo:
In the present study, a thrombin-like enzyme named BpSP-I was isolated from Bothrops pauloensis snake venom and its biochemical, enzymatic and pharmacological characteristics were determined. BpSP-I is a glycoprotein that contains both N-linked carbohydrates and sialic acid in its structure, with M(r) = 34,000 under reducing conditions and pI similar to 6.4. The N-terminal sequence of the enzyme (VIGGDECDINEHPFL) showed high similarity with other thrombin-like enzymes from snake venoms. BpSP-I showed high clotting activity upon bovine and human plasma and was inhibited by PMSF, benzamidine and leupeptin. Moreover, this enzyme showed stability when examined at different temperatures (-70 to 37 degrees C), pH values (3-9) or in the presence of divalent metal ions (Ca(2+), Mg(2+), Zn(2+) and Mn(2+)). BpSP-I showed high catalytic activity upon substrates, such as fibrinogen, TAME, S-2238 and S-2288. It also showed kallikrein-like activity, but was unable to act upon factor Xa and plasmin substrates. Indeed, the enzyme did not induce hemorrhage, myotoxicity or edema. Taken together, our data showed that BpSP-I is in fact a thrombin-like enzyme isoform isolated from Bothrops pauloensis snake venom. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
An L-amino acid oxidase (Bp-LAAO) from Bothrops pauloensis snake venom was highly purified using sequential chromatography steps on CM-Sepharose, Phenyl-Sepharose CL4B, Benzamidine Sepharose and C18 reverse-phase HPLC. Purified Bp-LAAO showed to be a homodimeric acidic glycoprotein with molecular weight around 65 kDa under reducing conditions in SDS-PAGE. The best substrates for Bp-LAAO were L-Met, L-Leu, L-Phe and L-Ile and the enzyme showed a strong reduction of its catalytic activity upon L-Met and L-Phe substrates at extreme temperatures. Bp-LAAO showed leishmanicidal, antitumoral and bactericidal activities dose dependently. Bp-LAAO induced platelet aggregation in platelet-rich plasma and this activity was inhibited by catalase. Bp-LAAC-cDNA of 1548 bp codified a mature protein with 516 amino acid residues corresponding to a theoretical isoelectric point and molecular weight of 6.3 and 58 kDa, respectively. Additionally, structural and phylogenetic studies identified residues under positive selection and their probable location in Elp-LAAO and other snake venom LAAOs (svLAAOs). Structural and functional investigations of these enzymes can contribute to the advancement of toxinology and to the elaboration of novel therapeutic agents. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Dendritic cells (DCs) are powerful initiators of innate and adaptive immune responses. Ticks are blood-sucking ectoparasite arthropods that suppress host immunity by secreting immunomodulatory molecules in their saliva. Here, compounds present in Rhipicephalus sanguineus tick saliva with immunomodulatory effects on DC differentiation, cytokine production, and costimulatory molecule expression were identified. R. sanguineus tick saliva inhibited IL-12p40 and TNF-alpha while potentiating IL-10 cytokine production by bone marrow-derived DCs stimulated by Toll-like receptor-2, -4, and -9 agonists. To identify the molecules responsible for these effects, we fractionated the saliva through microcon filtration and reversed-phase HPLC and tested each fraction for DC maturation. Fractions with proven effects were analyzed by micro-HPLC tandem mass spectrometry or competition ELISA. Thus, we identified for the first time in tick saliva the purine nucleoside adenosine (concentration of similar to 110pmol/mu l) as a potent anti-inflammatory salivary inhibitor of DC cytokine production. We also found prostaglandin E(2) (PGE(2) similar to 100 nM) with comparable effects in modulating cytokine production by DCs. Both Ado and PGE(2) inhibited cytokine production by inducing cAMP-PKA signaling in DCs. Additionally, both Ado and PGE(2) were able to inhibit expression of CD40 in mature DCs. Finally, flow cytometry analysis revealed that PGE(2), but not Ado, is the differentiation inhibitor of bone marrow-derived DCs. The presence of non-protein molecules adenosine and PGE(2) in tick saliva indicates an important evolutionary mechanism used by ticks to subvert host immune cells and allow them to successfully complete their blood meal and life cycle.
Resumo:
Granule impact deformation has long been recognised as important in determining whether or not two colliding granules will coalesce. Work in the last 10 years has highlighted the fact that viscous effects are significant in granulation. The relative strengths of different formulations can vary with strain rate. Therefore, traditional strength measurements made at pseudo-static conditions give no indication, even qualitatively, of how materials will behave at high strain rates, and hence are actually misleading when used to model granule coalescence. This means that new standard methods need to be developed for determining the strain rates encountered by granules inside industrial equipment and also for measuring the mechanical properties of granules at these strain rates. The constitutive equations used in theoretical models of granule coalescence also need to be extended to include strain-rate dependent components.
Resumo:
Although it has long been supposed that resistance training causes adaptive changes in the CNS, the sites and nature of these adaptations have not previously been identified. In order to determine whether the neural adaptations to resistance training occur to a greater extent at cortical or subcortical sites in the CNS, we compared the effects of resistance training on the electromyographic (EMG) responses to transcranial magnetic (TMS) and electrical (TES) stimulation. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle of 16 individuals before and after 4 weeks of resistance training for the index finger abductors (n = 8), or training involving finger abduction-adduction without external resistance (n = 8). TMS was delivered at rest at intensities from 5 % below the passive threshold to the maximal output of the stimulator. TMS and TES were also delivered at the active threshold intensity while the participants exerted torques ranging from 5 to 60 % of their maximum voluntary contraction (MVC) torque. The average latency of MEPs elicited by TES was significantly shorter than that of TMS MEPs (TES latency = 21.5 ± 1.4 ms; TMS latency = 23.4 ± 1.4 ms; P < 0.05), which indicates that the site of activation differed between the two forms of stimulation. Training resulted in a significant increase in MVC torque for the resistance-training group, but not the control group. There were no statistically significant changes in the corticospinal properties measured at rest for either group. For the active trials involving both TMS and TES, however, the slope of the relationship between MEP size and the torque exerted was significantly lower after training for the resistance-training group (P < 0.05). Thus, for a specific level of muscle activity, the magnitude of the EMG responses to both forms of transcranial stimulation were smaller following resistance training. These results suggest that resistance training changes the functional properties of spinal cord circuitry in humans, but does not substantially affect the organisation of the motor cortex.
Resumo:
[beta]-Hydroxy [beta]-methylbutyrate (HMB), a metabolite of the essential amino acid leucine, is one of the latest dietary supplements promoted to enhance gains in strength and lean body mass associated with resistance training. Unlike anabolic hormones that induce muscle hypertrophy by increasing muscle protein synthesis, HMB is claimed to influence strength and lean body mass by acting as an anticatabolic agent, minimising protein breakdown and damage to cells that may occur with intense exercise. Research on HMB has recently tested this hypothesis, under the assumption that it may be the active compound associated with the anticatabolic effects of leucine and its metabolites. While much of the available literature is preliminary in nature and not without methodological concern, there is support for the claims made regarding HMB supplementation, at least in young, previously untrained individuals. A mechanism by which this may occur is unknown, but research undertaken to date suggests there may be a reduction in skeletal muscle damage, although this has not been assessed directly. The response of resistance trained and older individuals to HMB administration is less clear. While the results of research conducted to date appear encouraging, caution must be taken when interpreting outcomes as most manuscripts are presented in abstract form only, not having to withstand the rigors of peer review. Of the literature reviewed relating to HMB administration during resistance training, only 2 papers are full manuscripts appearing in peer reviewed journals. The remaining 8 papers are published as abstracts only, making it difficult to critically review the research. There is clearly a need for more tightly controlled, longer duration studies to verify if HMB enhances strength and muscular hypertrophy development associated with resistance training across a range of groups, including resistance trained individuals.
Resumo:
Quasi-birth-and-death (QBD) processes with infinite “phase spaces” can exhibit unusual and interesting behavior. One of the simplest examples of such a process is the two-node tandem Jackson network, with the “phase” giving the state of the first queue and the “level” giving the state of the second queue. In this paper, we undertake an extensive analysis of the properties of this QBD. In particular, we investigate the spectral properties of Neuts’s R-matrix and show that the decay rate of the stationary distribution of the “level” process is not always equal to the convergence norm of R. In fact, we show that we can obtain any decay rate from a certain range by controlling only the transition structure at level zero, which is independent of R. We also consider the sequence of tandem queues that is constructed by restricting the waiting room of the first queue to some finite capacity, and then allowing this capacity to increase to infinity. We show that the decay rates for the finite truncations converge to a value, which is not necessarily the decay rate in the infinite waiting room case. Finally, we show that the probability that the process hits level n before level 0 given that it starts in level 1 decays at a rate which is not necessarily the same as the decay rate for the stationary distribution.
Resumo:
The molecular mechanism of how insects recognize intruding microorganisms and parasites and distinguish them from own body structures is not well known. We explored evolutionary adaptations in an insect parasitoid host interaction to identify components that interfere with the recognition of foreign objects and cellular encapsulation. Because some parasitoids provide protection for the developing wasp in the absence of an overt suppression of the insect host defense, we analyzed the surface of eggs and symbiotic viruses for protective properties. Here we report on the molecular cloning of a 32-kDa protein (Crp32) that is one of the major protective components. It is produced in the calyx cells of the female wasp ovaries and attached to the surface of the egg and other particles including polydnaviruses. The recombinant protein confers protection to coated objects in a cellular encapsulation assay suggesting that a layer of Crp32 may prevent cellular encapsulation reactions by a local inactivation of the host defense system.