932 resultados para Multiphase flow with interphase exchanges


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A general differential equation for the propagation of sound in a variable area duct or nozzle carrying incompressible mean flow (of low Mach number) is derived and solved for hyperbolic and parabolic shapes. Expressions for the state variables of acoustic pressure and acoustic mass velocity of the shapes are derived. Self‐consistent expressions for the four‐pole parameters are developed. The conical, exponential, catenoidal, sine, and cosine ducts are shown to be special cases of hyperbolic ducts. Finally, it is shown that if the mean flow in computing the transmission loss of the mufflers involving hyperbolic and parabolic shapes was not neglected, little practical benefit would be derived.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Instruction reuse is a microarchitectural technique that improves the execution time of a program by removing redundant computations at run-time. Although this is the job of an optimizing compiler, they do not succeed many a time due to limited knowledge of run-time data. In this paper we examine instruction reuse of integer ALU and load instructions in network processing applications. Specifically, this paper attempts to answer the following questions: (1) How much of instruction reuse is inherent in network processing applications?, (2) Can reuse be improved by reducing interference in the reuse buffer?, (3) What characteristics of network applications can be exploited to improve reuse?, and (4) What is the effect of reuse on resource contention and memory accesses? We propose an aggregation scheme that combines the high-level concept of network traffic i.e. "flows" with a low level microarchitectural feature of programs i.e. repetition of instructions and data along with an architecture that exploits temporal locality in incoming packet data to improve reuse. We find that for the benchmarks considered, 1% to 50% of instructions are reused while the speedup achieved varies between 1% and 24%. As a side effect, instruction reuse reduces memory traffic and can therefore be considered as a scheme for low power.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multiwavelength data indicate that the X-ray-emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To a large extent, cooling is offset by heating due to active galactic nuclei (AGNs) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t(TI)/t(ff)) falls below a critical threshold of approximate to 10. When this happens, dense cold gas decouples from the hot intracluster medium (ICM) phase and generates inhomogeneous and spatially extended Ha filaments. These cold gas clumps and filaments ``rain'' down onto the central regions of the core, forming a cold rotating torus and in part feeding the supermassive black hole. Consequently, the self-regulated feedback enhances AGN heating and the core returns to a higher entropy level with t(TI)/t(ff) > 10. Eventually, the core reaches quasi-stable global thermal equilibrium, and cold filaments condense out of the hot ICM whenever t(TI)/t(ff) less than or similar to 10. This occurs despite the fact that the energy from AGN jets is supplied to the core in a highly anisotropic fashion. The effective spatial redistribution of heat is enabled in part by the turbulent motions in the wake of freely falling cold filaments. Increased AGN activity can locally reverse the cold gas flow, launching cold filamentary gas away from the cluster center. Our criterion for the condensation of spatially extended cold gas is in agreement with observations and previous idealized simulations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The unsteady rotating flow of an incompressible laminar viscous electrically conducting fluid over an impulsively rotated infinite disk in the presence of magnetic field and suction is investigated. We have considered the situation where there is a steady state initially (i.e., at t = 0, the fluid is rotating with constant angular velocity over a stationary disk). Then at t > 0, the disk is suddenly rotated with a constant angular velocity either in the same direction or in opposite direction to that of the fluid rotation which causes unsteadiness in the flow field. The effect of the impulsive motion is found to be more pronounced on the tangential shear stress than on the radial shear stress. When the disk and the fluid rotate in the same direction, the tangential shear stress at the surface changes sign in a small time interval immediately after the start of the impulsive motion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Experimental and numerical studies of slurry generation using a cooling slope are presented in the paper. The slope having stainless steel body has been designed and constructed to produce semisolid A356 Al alloy slurry. The pouring temperature of molten metal, slope angle of the cooling slope and slope wall temperature were varied during the experiment. A multiphase numerical model, considering liquid metal and air, has been developed to simulate the liquid metal flow along the cooling channel using an Eulerian two-phase flow approach. Solid fraction evolution of the solidifying melt is tracked at different locations of the cooling channel following Schiel's equation. The continuity, momentum and energy equations are solved considering thin wall boundary condition approach. During solidification of the melt, based on the liquid fraction and latent heat of the alloy, temperature of the alloy is modified continuously by introducing a modified temperature recovery method. Numerical simulations has been carried out for semisolid slurry formation by varying the process parameters such as angle of the cooling slope, cooling slope wall temperature and melt superheat temperature, to understand the effect of process variables on cooling slope semisolid slurry generation process such as temperature distribution, velocity distribution and solid fraction of the solidifying melt. Experimental validation performed for some chosen cases reveals good agreement with the numerical simulations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A soluble-lead redox flow battery with corrugated-graphite sheet and reticulated-vitreous carbon as positive and negative current collectors is assembled and performance tested. In the cell, electrolyte comprising of 1 center dot 5 M lead (II) methanesulfonate and 0 center dot 9 M methanesulfonic acid with sodium salt of lignosulfonic acid as additive is circulated through the reaction chamber at a flow rate of 50 ml min (-aEuro parts per thousand 1). During the charge cycle, pure lead (Pb) and lead dioxide (PbO2) from the soluble lead (II) species are electrodeposited onto the surface of the negative and positive current collectors, respectively. Both the electrodeposited materials are characterized by XRD, XPS and SEM. Phase purity of synthesized lead (II) methanesulfonate is unequivocally established by single crystal X-ray diffraction followed by profile refinements using high resolution powder data. During the discharge cycle, electrodeposited Pb and PbO2 are dissolved back into the electrolyte. Since lead ions are produced during oxidation and reduction at the negative and positive plates, respectively there is no risk of crossover during discharge cycle, preventing the possibility of lowering the overall efficiency of the cell. As the cell employs a common electrolyte, the need of employing a membrane is averted. It has been possible to achieve a capacity value of 114 mAh g (-aEuro parts per thousand 1) at a load current-density of 20 mA cm (-aEuro parts per thousand 2) with the cell at a faradaic efficiency of 95%. The cell is tested for 200 cycles with little loss in its capacity and efficiency.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mass flow rate, (m) over dot, associated with the lateral outflow of dry, cohesionless granular material through circular orifices of diameter D made in vertical walls of silos was measured experimentally in order to determine also the influence of the wall thickness of the silo, w. Geometrical arguments, based on the outflow happening, are given in order to have a general correlation for (m) over dot embracing both quantities, D and w. The angle of repose appears to be an important characterization factor in these kinds of flows.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ability to perform strong updates is the main contributor to the precision of flow-sensitive pointer analysis algorithms. Traditional flow-sensitive pointer analyses cannot strongly update pointers residing in the heap. This is a severe restriction for Java programs. In this paper, we propose a new flow-sensitive pointer analysis algorithm for Java that can perform strong updates on heap-based pointers effectively. Instead of points-to graphs, we represent our points-to information as maps from access paths to sets of abstract objects. We have implemented our analysis and run it on several large Java benchmarks. The results show considerable improvement in precision over the points-to graph based flow-insensitive and flow-sensitive analyses, with reasonable running time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the effects of optically thin radiative cooling on the structure of radiatively inefficient accretion flows (RIAFs). The flow structure is geometrically thick, and independent of the gas density and cooling, if the cooling time is longer than the viscous time-scale (i.e. t(cool) greater than or similar to t(visc)). For higher densities, the gas can cool before it can accrete and forms the standard geometrically thin, optically thick Shakura-Sunyaev disc. For usual cooling processes (such as bremsstrahlung), we expect an inner hot flow and an outer thin disc. For a short cooling time the accretion flow separates into two phases: a radiatively inefficient hot coronal phase and a cold thin disc. We argue that there is an upper limit on the density of the hot corona corresponding to a critical value of t(cool)/t(ff)( similar to 10-100), the ratio of the cooling time and the free-fall time. Based on our simulations, we have developed a model for transients observed in black hole X-ray binaries (XRBs). An XRB in a quiescent hot RIAF state can transition to a cold blackbody-dominated state because of an increase in the mass accretion rate. The transition from a thin disc to a RIAF happens because of mass exhaustion due to accretion; the transition happens when the cooling time becomes longer than the viscous time at inner radii. Since the viscous time-scale for a geometrically thin disc is quite long, the high-soft state is expected to be long-lived. The different time-scales in black hole transients correspond to different physical processes such as viscous evolution, cooling and free fall. Our model captures the overall features of observed state transitions in XRBs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stochastic modelling is a useful way of simulating complex hard-rock aquifers as hydrological properties (permeability, porosity etc.) can be described using random variables with known statistics. However, very few studies have assessed the influence of topological uncertainty (i.e. the variability of thickness of conductive zones in the aquifer), probably because it is not easy to retrieve accurate statistics of the aquifer geometry, especially in hard rock context. In this paper, we assessed the potential of using geophysical surveys to describe the geometry of a hard rock-aquifer in a stochastic modelling framework. The study site was a small experimental watershed in South India, where the aquifer consisted of a clayey to loamy-sandy zone (regolith) underlain by a conductive fissured rock layer (protolith) and the unweathered gneiss (bedrock) at the bottom. The spatial variability of the thickness of the regolith and fissured layers was estimated by electrical resistivity tomography (ERT) profiles, which were performed along a few cross sections in the watershed. For stochastic analysis using Monte Carlo simulation, the generated random layer thickness was made conditional to the available data from the geophysics. In order to simulate steady state flow in the irregular domain with variable geometry, we used an isoparametric finite element method to discretize the flow equation over an unstructured grid with irregular hexahedral elements. The results indicated that the spatial variability of the layer thickness had a significant effect on reducing the simulated effective steady seepage flux and that using the conditional simulations reduced the uncertainty of the simulated seepage flux. As a conclusion, combining information on the aquifer geometry obtained from geophysical surveys with stochastic modelling is a promising methodology to improve the simulation of groundwater flow in complex hard-rock aquifers. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Deviated nasal septum (DNS) is one of the major causes of nasal obstruction. Polyvinylidene fluoride (PVDF) nasal sensor is the new technique developed to assess the nasal obstruction caused by DNS. This study evaluates the PVDF nasal sensor measurements in comparison with PEAK nasal inspiratory flow (PNIF) measurements and visual analog scale (VAS) of nasal obstruction. Methods: Because of piezoelectric property, two PVDF nasal sensors provide output voltage signals corresponding to the right and left nostril when they are subjected to nasal airflow. The peak-to-peak amplitude of the voltage signal corresponding to nasal airflow was analyzed to assess the nasal obstruction. PVDF nasal sensor and PNIF were performed on 30 healthy subjects and 30 DNS patients. Receiver operating characteristic was used to analyze the DNS of these two methods. Results: Measurements of PVDF nasal sensor strongly correlated with findings of PNIF (r = 0.67; p < 0.01) in DNS patients. A significant difference (p < 0.001) was observed between PVDF nasal sensor measurements and PNIF measurements of the DNS and the control group. A cutoff between normal and pathological of 0.51 Vp-p for PVDF nasal sensor and 120 L/min for PNIF was calculated. No significant difference in terms of sensitivity of PVDF nasal sensor and PNIF (89.7% versus 82.6%) and specificity (80.5% versus 78.8%) was calculated. Conclusion: The result shows that PVDF measurements closely agree with PNIF findings. Developed PVDF nasal sensor is an objective method that is simple, inexpensive, fast, and portable for determining DNS in clinical practice.