995 resultados para Multiphase Turbulent Flow
Resumo:
Mixed confined and unconfined groundwater flow occurs in a bounded initially dry aquifer when the hydraulic head at the side boundary suddenly rises above the elevation of the aquifer's top boundary. The flow problem as modelled by the Boussinesq equation is non-trivial because of the involvement of two moving boundaries. The transformed equation (based on a similarity transformation) can, however, be dealt with more easily. Here, we present an approximate analytical solution for this flow problem. The approximate solution is compared with an 'exact' numerical solution and found to be a very accurate description for describing the mixed confined and unconfined flow in the confined aquifer. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We report the first steps of a collaborative project between the University of Queensland, Polyflow, Michelin, SK Chemicals, and RMIT University; on simulation, validation and application of a recently introduced constitutive model designed to describe branched polymers. Whereas much progress has been made on predicting the complex flow behaviour of many - in particular linear - polymers, it sometimes appears difficult to predict simultaneously shear thinning and extensional strain hardening behaviour using traditional constitutive models. Recently a new viscoelastic model based on molecular topology, was proposed by McLeish and Larson (1998). We explore the predictive power of a differential multi-mode version of the pom-pom model for the flow behaviour of two commercial polymer melts: a (long-chain branched) low-density polyethylene (LDPE) and a (linear) high-density polyethylene (HDPE). The model responses are compared to elongational recovery experiments published by Langouche and Debbaut (1999), and start-up of simple shear flow, stress relaxation after simple and reverse step strain experiments carried out in our laboratory.
Resumo:
In this paper the diffusion and flow of carbon tetrachloride, benzene and n-hexane through a commercial activated carbon is studied by a differential permeation method. The range of pressure is covered from very low pressure to a pressure range where significant capillary condensation occurs. Helium as a non-adsorbing gas is used to determine the characteristics of the porous medium. For adsorbing gases and vapors, the motion of adsorbed molecules in small pores gives rise to a sharp increase in permeability at very low pressures. The interplay between a decreasing behavior in permeability due to the saturation of small pores with adsorbed molecules and an increasing behavior due to viscous flow in larger pores with pressure could lead to a minimum in the plot of total permeability versus pressure. This phenomenon is observed for n-hexane at 30degreesC. At relative pressure of 0.1-0.8 where the gaseous viscous flow dominates, the permeability is a linear function of pressure. Since activated carbon has a wide pore size distribution, the mobility mechanism of these adsorbed molecules is different from pore to pore. In very small pores where adsorbate molecules fill the pore the permeability decreases with an increase in pressure, while in intermediate pores the permeability of such transport increases with pressure due to the increasing build-up of layers of adsorbed molecules. For even larger pores, the transport is mostly due to diffusion and flow of free molecules, which gives rise to linear permeability with respect to pressure. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A long-term experiment was conducted to compare the effects of flowing and still water on growth, and the relationship between water flow and nutrients, in Aponogeton elongatus, a submerged aquatic macrophyte. A. elongatus plants were grown for 23 weeks with three levels of nutrition (0, 0.5 and 1g Osmocote Plus(R) fertiliser pot(-1)) in aquaria containing stirred or unstirred water. Fertilized plants grew much better than non-fertilized. The highest fertilizer level produced 29% wider leaves and 58% higher total dry weight in stirred water. Stirred water increased leaf area by 40% and tuber size by 81%, but only with the highest level of nutrition. These results suggest that this plant depends on its roots for mineral uptake, rather than from the open water, and the major limitation to growth in still water is the supply of dissolved inorganic carbon. It was the combined effects of nutrient availability and stirring that produced the strongest response in plant growth, morphology and composition. This study provides some explanation for the observations of others that these plants grow best in creeks or river systems with permanently flowing water.
Resumo:
Pulp lifters, also known, as pan lifters are an integral part of the majority of autogenous (AG), semi-autogenous (SAG) and grate discharge ball mills. The performance of the pulp lifters in conjunction with grate design determines the ultimate flow capacity of these mills. Although the function of the pulp lifters is simply to transport the slurry passed through the discharge grate into the discharge trunnion, their performance depends on their design as well as that of the grate and operating conditions such as mill speed and charge level. However, little or no work has been reported on the performance of grate-pulp lifter assemblies and in particular the influence of pulp lifter design on slurry transport. Ideally, the discharge rate through a grate-pulp lifter assembly should be equal to the discharge rate through at a given mill hold-up. However, the results obtained have shown that conventional pulp lifter designs cause considerable restrictions to flow resulting in reduced flow capacity. In this second of a two-part series of papers the performance of conventional pulp lifters (radial and spiral designs) is described and is based on extensive test work carried out in a I m diameter pilot SAG mill. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Discharge grates play an important role in determining the performance of autogenous, semi-autogenous and grate discharge ball mills. The flow capacity (grinding capacity) of these mills is strongly influenced by the discharge grate design-open area and position of apertures, as well as the performance of the pulp lifters. As mill sizes have progressively increased and closed-circuiting has become more popular the importance of grate and pulp lifter design has grown. Unfortunately very few studies have concentrated on this aspect of mill performance. To remedy this a series of laboratory and pilot-scale tests were undertaken to study both the performance of grates on their own and in conjunction with pulp lifters. In this first paper of a two-part series the results from the grate-only experiments are presented and discussed, whilst the performance of the grate-pulp-lifter system is covered in the second paper. The results from the grate-only experiments have shown that the build-up of slurry (hold-up) inside the mill starts from the shoulder of the charge, while the toe position of the slurry progressively moves towards the toe of the charge with increasing flowrate. Besides grate design (open area and position of apertures), charge volume and mill speed were also found to have a strong influence on mill hold-up and interact with grate design variables. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Today, the standard approach for the kinetic analysis of dynamic PET studies is compartment models, in which the tracer and its metabolites are confined to a few well-mixed compartments. We examine whether the standard model is suitable for modern PET data or whether theories including more physiologic realism can advance the interpretation of dynamic PET data. A more detailed microvascular theory is developed for intravascular tracers in single-capillary and multiple-capillary systems. The microvascular models, which account for concentration gradients in capillaries, are validated and compared with the standard model in a pig liver study. Methods: Eight pigs underwent a 5-min dynamic PET study after O-15-carbon monoxide inhalation. Throughout each experiment, hepatic arterial blood and portal venous blood were sampled, and flow was measured with transit-time flow meters. The hepatic dual-inlet concentration was calculated as the flow-weighted inlet concentration. Dynamic PET data were analyzed with a traditional single-compartment model and 2 microvascular models. Results: Microvascular models provided a better fit of the tissue activity of an intravascular tracer than did the compartment model. In particular, the early dynamic phase after a tracer bolus injection was much improved. The regional hepatic blood flow estimates provided by the microvascular models (1.3 +/- 0.3 mL min(-1) mL(-1) for the single-capillary model and 1.14 +/- 0.14 min(-1) mL(-1) for the multiple-capillary model) (mean +/- SEM mL of blood min(-1) mL of liver tissue(-1)) were in agreement with the total blood flow measured by flow meters and normalized to liver weight (1.03 +/- 0.12 mL min(-1) mL(-1)). Conclusion: Compared with the standard compartment model, the 2 microvascular models provide a superior description of tissue activity after an intravascular tracer bolus injection. The microvascular models include only parameters with a clear-cut physiologic interpretation and are applicable to capillary beds in any organ. In this study, the microvascular models were validated for the liver and provided quantitative regional flow estimates in agreement with flow measurements.
Resumo:
Water wetting is a crucial issue in carbon dioxide (CO.) corrosion of multiphase flow pipelines made from mild steel. This study demonstrates the use of a novel benchtop apparatus, a horizontal rotating cylinder, to study the effect of water wetting on CO2 corrosion of mild steel in two-phase flow. The setup is similar to a standard rotating cylinder except for its horizontal orientation and the presence of two phases-typically water and oil. The apparatus has been tested by using mass-transfer measurements and CO2 corrosion measurements in single-phase water flow. CO2 corrosion measurements were subsequently performed using a water/hexane mixture with water cuts varying between 5% and 50%. While the metal surface was primarily hydrophilic under stagnant. conditions, a variety of dynamic water wetting situations was encountered as the water cut and fluid velocity were altered. Threshold velocities were identified at various water cuts when the surface became oil-wet and corrosion stopped.
Resumo:
A new modeling approach-multiple mapping conditioning (MMC)-is introduced to treat mixing and reaction in turbulent flows. The model combines the advantages of the probability density function and the conditional moment closure methods and is based on a certain generalization of the mapping closure concept. An equivalent stochastic formulation of the MMC model is given. The validity of the closuring hypothesis of the model is demonstrated by a comparison with direct numerical simulation results for the three-stream mixing problem. (C) 2003 American Institute of Physics.
Resumo:
Hot-wire anemometers at low operating currents are used as fast response resistance thermometers for the study of heated turbulent flows. Simultaneous measurement of temperature and velocity is generally performed with multi-wire arrays. In order to give good spatial resolution a new layout has been tested which uses an inclined temperature wire positioned parallel to the nearest inclined velocity wire. This leads to an asymmetric wire arrangement relative to the mean flow direction. As expected, a reduction in thermal interference from the velocity wires results when compared with an array containing a temperature wire placed normal to the flow. However, measurement of higher order moments of fluctuating quantities in an axisymmetric jet shows considerable distortion of radial distributions which is traced to alteration of the temperature field sensed by the temperature wire. When inclined velocity sensitive wires contain a temperature component, the latter may be affected by the same phenomenon.
Resumo:
Heat transfer levels have been investigated behind a rearward-facing step in a superorbital expansion tube. The heat transfer was measured along a flat plate and behind 2 and 3mm steps with the same length to step height ratio. Results were obtained with air as the test gas at speeds of 6.76kms(-1) and 9-60kms(-1) corresponding to stagnation enthalpies of 26MJ/kg and 48MJ/kg respectively. A laminar boundary layer was established on the flat plate and measured heat transfer levels were consistent with classical empirical correlations. In the case of flow behind a step, the measurements showed a gradual rise in heat transfer from the rear of the step to a plateau several step heights downstream for both flow conditions. Reattachment distance was estimated to be approximately 1.6 step heights downstream of the 2mm step at the low enthalpy condition through the use of flow visualisation.
Resumo:
Skin-friction measurements are reported for high-enthalpy and high-Mach-number laminar, transitional and turbulent boundary layers. The measurements were performed in a free-piston shock tunnel with air-flow Mach number, stagnation enthalpy and Reynolds numbers in the ranges of 4.4-6.7, 3-13 MJ kg(-1) and 0.16 x 10(6)-21 x 10(6), respectively. Wall temperatures were near 300 K and this resulted in ratios of wall enthalpy to flow-stagnation enthalpy in the range of 0.1-0.02. The experiments were performed using rectangular ducts. The measurements were accomplished using a new skin-friction gauge that was developed for impulse facility testing. The gauge was an acceleration compensated piezoelectric transducer and had a lowest natural frequency near 40 kHz. Turbulent skin-friction levels were measured to within a typical uncertainty of +/-7%. The systematic uncertainty in measured skin-friction coefficient was high for the tested laminar conditions; however, to within experimental uncertainty, the skin-friction and heat-transfer measurements were in agreement with the laminar theory of van Driest (1952). For predicting turbulent skin-friction coefficient, it was established that, for the range of Mach numbers and Reynolds numbers of the experiments, with cold walls and boundary layers approaching the turbulent equilibrium state, the Spalding & Chi (1964) method was the most suitable of the theories tested. It was also established that if the heat transfer rate to the wall is to be predicted, then the Spalding & Chi (1964) method should be used in conjunction with a Reynolds analogy factor near unity. If more accurate results are required, then an experimentally observed relationship between the Reynolds analogy factor and the skin-friction coefficient may be applied.
Resumo:
A growing demand for efficient air quality management calls for the development of technologies capable of meeting the stringent requirements now being applied in areas of chemical, biological and medical activities. Currently, filtration is the most effective process available for removal of fine particles from carrier gases. Purification of gaseous pollutants is associated with adsorption, absorption and incineration. In this paper we discuss a new technique for highly efficient simultaneous purification of gaseous and particulate pollutants from carrier gases, and investigate the utilization of Nuclear Magnetic Resonance (NMR) imaging for the study of the dynamic processes associated with gas-liquid flow in porous media. Our technique involves the passage of contaminated carrier gases through a porous medium submerged into a liquid, leading to the formation of narrow and tortuous pathways through the medium. The wet walls of these pathways result in outstanding purification of gaseous, liquid and solid alien additives. NMR imaging was successfully used to map the gas pathways inside the porous medium submerged into the liquid layer. (C) 2002 Elsevier Science B.V. All rights reserved.