979 resultados para Multi-actuated piezoelectric devices
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Doutor em Química Sustentável
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemistry, Structural Biochemistry
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Eletrotécnica e de Computadores
Resumo:
The Graphics Processing Unit (GPU) is present in almost every modern day personal computer. Despite its specific purpose design, they have been increasingly used for general computations with very good results. Hence, there is a growing effort from the community to seamlessly integrate this kind of devices in everyday computing. However, to fully exploit the potential of a system comprising GPUs and CPUs, these devices should be presented to the programmer as a single platform. The efficient combination of the power of CPU and GPU devices is highly dependent on each device’s characteristics, resulting in platform specific applications that cannot be ported to different systems. Also, the most efficient work balance among devices is highly dependable on the computations to be performed and respective data sizes. In this work, we propose a solution for heterogeneous environments based on the abstraction level provided by algorithmic skeletons. Our goal is to take full advantage of the power of all CPU and GPU devices present in a system, without the need for different kernel implementations nor explicit work-distribution.To that end, we extended Marrow, an algorithmic skeleton framework for multi-GPUs, to support CPU computations and efficiently balance the work-load between devices. Our approach is based on an offline training execution that identifies the ideal work balance and platform configurations for a given application and input data size. The evaluation of this work shows that the combination of CPU and GPU devices can significantly boost the performance of our benchmarks in the tested environments, when compared to GPU-only executions.
Resumo:
Dissertation presented to obtain the Ph.D degree in Computational Biology
Resumo:
The work presented in this thesis was developed in collaboration with a Portuguese company, BeyonDevices, devoted to pharmaceutical packaging, medical technology and device industry. Specifically, the composition impact and surface modification of two polymeric medical devices from the company were studied: inhalers and vaginal applicators. The polyethylene-based vaginal applicator was modified using supercritical fluid technology to acquire self-cleaning properties and prevent the transport of bacteria and yeasts to vaginal flora. For that, in-situ polymerization of 2-substituted oxazolines was performed within the polyethylene matrix using supercritical carbon dioxide. The cationic ring-opening polymerization process was followed by end-capping with N,N-dimethyldodecylamine. Furthermore, for the same propose, the polyethylene matrix was impregnated with lavender oil in supercritical medium. The obtained materials were characterized physical and morphologically and the antimicrobial activity against bacteria and yeasts was accessed. Materials modified using 2-substituted oxazolines showed an effective killing ability for all the tested microorganisms, while the materials modified with lavender oil did not show antimicrobial activity. Only materials modified with oligo(2-ethyl-2-oxazoline) maintain the activity during the long term stability. Furthermore, the cytotoxicity of the materials was tested, confirming their biocompatibilty. Regarding the inhaler, its surface was modified in order to improve powder flowability and consequently, to reduce powder retention in the inhaler´s nozzle. New dry powder inhalers (DPIs), with different needle’s diameters, were evaluated in terms of internal resistance and uniformity of the emitted dose. It was observed that they present a mean resistance of 0.06 cmH2O0.5/(L/min) and the maximum emitted dose obtained was 68.9% for the inhaler with higher needle´s diameter (2 mm). Thus, this inhaler was used as a test and modified by the coating with a commonly-used force control agent, magnesium stearate, dried with supercritical carbon dioxide (scCO2) and the uniformity of delivered dose tests were repeated. The modified inhaler showed an increase in emitted dose from 68.9% to 71.3% for lactose and from 30.0% to 33.7% for Foradil.
Resumo:
Portuguese Science Foundation - project Electra PTDC/CTM/099124/2008 and the PhD grant SFRH/BD/45224. financial support: Professor E. Fortunato’s ERC 2008 Advanced Grant (INVISIBLE contract number 228144), “APPLE” FP7-NMP-2010-SME/262782-2 and “SMARTEC” FP7-ICT-2009.3.9/258203
Resumo:
Nowadays it is known that the human body is continuous source of many types of energy and the devices used for collecting energy taken from the environment also have the required capabilities for the collection of the energy produced by the Human body (HB), but very limited and with very low efficiency. Low power and high yield converters are particularly needed in these cases of collecting energy from human activity and its movements due to the small amount of energy generated this way. But this situation can be improved. Enhancing or focusing the human movements by using mechanical amplifiers applied to the piezoelectric element. By doing so the input of energy in the element increases. As such increasing its output, therefore producing more energy.