954 resultados para Muco-adhesive gel
Resumo:
The effect of concentration on the structure of SnO2 colloids in aqueous suspension, on their spatial correlation and on the gelation process was studied by small angle x-ray scattering (SAXS). The shape of the experimental SAXS curves varies with suspension concentration. For diluted suspensions ([SnO2] less than or equal to 0.13 mol L-1), SAXS results indicate the presence of colloidal fractal aggregates with an internal correlation length xi congruent to 20 Angstrom, without any noticeable spatial correlation between them. This suggests that the aggregates are spatially arranged without any significant interaction like in ideal gas structures. For higher concentrations ([SnO2] = 0.16, 0.32, and 0.64 mol L-1), the colloidal aggregates are larger (xi = 24 Angstrom) and exhibit a certain degree of spatial correlation between them. The pair correlation function corresponding to the sol with the highest concentration (0.92 mol L-1) reveals a rather strong short range order between aggregates, characteristic of a fluid-like structure, with an average nearest-neighbor distance between aggregates d(1) = 125 Angstrom and an average second-neighbor distance d(2) = 283 Angstrom. The pair distribution function remains essentially invariant during the sol-gel transition, suggesting that gelation involves the formation of a few points of connection between the aggregates resulting in a gel network constituted by essentially linear chains of clusters..
Resumo:
The purpose of this study was to evaluate in vivo the response of the periradicular tissues after endodontic treatment and root filling with Epiphany/Resilon (Penntron Clinical Technologies, LLC, Wallingford, CT) or gutta percha and new Sealapex (SybronEndo, Glendora, CA) in dogs' teeth with or without coronal restoration. Teeth without coronal restorations were used to assess the influence of continuous exposure to the oral environment on the periradicular tissues. Sixty root canals with vital pulps in three dogs were instrumented and obturated in a single session and randomly assigned to one of four groups as follows. group 1: root canal filling with Epiphany/Resilon with coronal restoration, group 2: root canal filling with Sealapex sealer and gutta percha with restoration, group 3: root canal filling with Epiphany/Resilon without restoration, and group 4: root canal filling with Sealapex sealer and gutta percha without coronal restoration. After 90 days, the animals were euthanized, and the maxillas and mandibles were removed and submitted for histologic processing. Longitudinal sections were obtained and stained with hematoxylin and eosin, Mallory's trichrome, and Brown and Brenn stains and examined under light microscopy. There were significant differences found between the four groups (p < 0.05). The results showed that roots canals filled with Epiphany/Resilon, with coronal restoration, had significantly less periradicular inflammation than roots canals filled with gutta percha and Sealapex, with coronal restoration (p = 0.021). No significant difference was observed in the intensity of inflammation between roots canals filled with Epiphany/ Resilon with no restoration and roots filled with gutta percha and Sealapex with restoration (p = 0.269). Roots canals filled with gutta percha and Sealapex sealer without coronal restoration showed the greatest degree of periradicular inflammation.
Resumo:
Titanium oxide is a good candidate as new support for hydrotreating (HDT) catalysts, but has the inconvenience of presenting small surface area and poor thermal stability. To overcome these handicaps TiO2-Al2O3 mixed oxides were proposed as catalyst support. Here, the results concerning the preparation, characterization and testing of molybdenum catalyst supported on titania-alumina are presented. The support was prepared by sol-gel route using titanium and aluminum isopropoxides, chelated with acetylacetone (acac) to promote similar hydrolysis ratio for both the alcoxides. The effect of nominal complexing ratios [acac]/[Ti] and of sol aging temperature on the structural features of nanometric particles was analyzed by quasi-elastic light scattering (QELS) and N-2 adsorption isotherm measurements. These characterizations have shown that the addition of acac and the increase of aging temperature favor the full dispersion of primary nanoparticles in mother acid solution. The dried powder presents a monomodal distribution of slit-shaped micropores, formed by irregular packing of platelet primary particles, surface area superior to 200 m(2) g(-1) and mean pore size of about 1 nm. These characteristics of porous texture are preserved after firing at 673 K. The diffraction patterns of sample fired above 973 K show only the presence of anatase crystalline phase. The crystalline structure of the support remained unaltered after molybdenum adsorption, but the surface area and the micropore volume were drastically reduced. (C) 2002 Published by Elsevier B.V. B.V.
Resumo:
Transparent thin films of nanocrystalline anatase were obtained by dip-coating process using an ethanolic suspension of redispersed nanoparticles. This suspension was prepared by sol-gel route and their redispersability achieved by surface grafting of para-toluene-sulfonic acid and acetylacetone. The effects of the acetylacetone content on the powder redispersibility and on the structural evolution of films were determined by small angle X-ray scattering, X-ray reflectometry and X-ray diffraction for different firing temperatures. The results demonstrated that the porous structure of the studied films consist of agglomerates of primary particles with two levels of porosity. The control of the amount of capping ligand allows for a fine-tuning of the average pore size of the dried films. Upon increasing the firing temperature up to 500 degrees C, progressive increase in apparent density, average pore size of films and average crystallite size of powders were observed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Structural, optical, electro and photoelectrochemical properties of amorphous and crystalline sol-gel Nb2O5 coatings have been determined. The coatings are n-type semiconductor with indirect allowed transition and present an overall low quantum efficiency (phi < 4%) for UV light to electric conversion. The photoconducting behavior of the coatings is discussed within the framework of the Gartner and Sodergren models. Improvement can be foreseen if Nb2O5 coatings can be made of 10-20 nm size nanoparticles.
Resumo:
This work presents a new route of preparation of zirconium ceramic foams based on the thermostimulated sol-gel process. This method produces gelled bodies with up to 90% of porosity in the wet gel and can be used to make complex-shaped components. Unfortunately, the shrinkage during the drying step allows to a catastrophic reduction (50%) of the foam porosity. To improve the foam stability we carried out a systematic study of the effect of gel foam aging on the drying process. Samples were aged in closed vessel at 25 C during different time period (from 6 to 240 h). The shrinkage and the mass loss during drying at 50 C were measured in situ, using a non-contact technique performed with a special apparatus. The results show that the total linear shrinkage decreases from 46% to 8% as the aging period increase from 6 to 240 h. This behavior is followed by a small change of total mass loss, from 42 to 54%. It indicates that by aging the structural stiffness of the foams increases due to secondary condensation reactions. Thus, by controlling the aging period, the porosity can be increased from 67 to 75% and the average size of mesopores of dried foams can be screened from 0.3 to 0.9 mum. Finally, these results demonstrate that the thermostimulated sol-gel transition provides a potential route to ceramic foams manufacture.
Small-angle X-ray scattering study of sol-gel-derived siloxane-PEG and siloxane-PPG hybrid materials
Resumo:
Hybrid organic-inorganic two-phase nanocomposites of siloxane-poly(ethylene glycol) (SiO3/2-PEG) and siloxane-poly(propylene glycol) (SiO3/2-PPG) have been obtained by the sol-gel process. In these composites, nanometric siloxane heterogeneities are embedded in a polymeric matrix with covalent bonds in the interfaces. The structure of these materials was investigated in samples with different molecular weights of the polymer using the smalt-angle X-ray scattering (SAXS) technique. The SAXS spectra exhibit a well-defined peak that was attributed to the existence of a strong spatial correlation of siloxane clusters. LiClO4-doped siloxane-PEG and siloxane-PPG hybrids, which exhibit good ionic conduction properties, have also been studied as a function of the lithium concentration [O]/[Li], O being the oxygens of ether type. SAXS results allowed us to establish a structural model for these materials for different basic compositions and a varying [Li] content. The conclusion is consistent with that deduced from ionic conductivity measurements that exhibit a maximum for [O]/[Li] =15.
Resumo:
A mercury-sensitive chemically modified electrode (CME) based on modified silica gel-containing carbon paste was developed. The functional group attached to the silica gel surface was 3-(2-thiobenzimidazolyl)propyl, which is able to complex mercury ions. This electrode was applied to the determination of mercury(II) ions in aqueous solution. The mercury was chemically preconcentrated on the CME prior to voltammetric determination by anodic stripping in the differential-pulse mode. A calibration graph covering the concentration range from 0.08 to 2 mg l-1 was constructed. The precision for six determinations of 0.122 and 0.312 mg l-1 Hg(II) was 3.2 and 2.9% (relative standard deviation), respectively. The detection limit for a 5-min preconcentration period was 0.013 mg l-1. A study for foreign ions was also made.