922 resultados para Morphology engineering of ZnO
Resumo:
Hydrogen storage in traditional metallic hydrides can deliver about 1.5 to 2.0 wt pct hydrogen but magnesium hydrides can achieve more than 7 wt pct. However, these systems suffer from high temperature release drawback and chemical instability problems. Recently, big improvements of reducing temperature and increasing kinetics of hydrogenation have been made in nanostructured Mg-based composites. This paper aims to provide an overview of the science and engineering of Mg materials and their nanosized composites with nanostructured carbon for hydrogen storage. The needs in research including preparation of the materials, processing and characterisation and basic mechanisms will be explored. The preliminary experimental results indicated a promising future for chemically stable hydrogen storage using carbon nanotubes modified metal hydrides under lower temperatures.
Resumo:
Objectives: The aim of this study was to assess the consistency and performance of radiologists interpreting breast magnetic resonance imaging (MRI) examinations. Materials and Methods: Two test sets of eight cases comprising cancers, benign disease, technical problems and parenchymal enhancement were prepared from two manufacturers' equipment (X and Y) and reported by 15 radiologists using the recording form and scoring system of the UK MRI breast screening study [(MAgnetic Resonance Imaging in Breast Screening (MARIBS)]. Variations in assessments of morphology, kinetic scores and diagnosis were measured by assessing intraobserver and interobserver variability and agreement. The sensitivity and specificity of reporting performances was determined using receiver operating characteristic (ROC) curve analysis. Results: Intraobserver variation was seen in 13 (27.7%) of 47 of the radiologists' conclusions (four technical and seven pathological differences). Substantial interobserver variation was observed in the scores recorded for morphology, pattern of enhancement, quantification of enhancement and washout pattern. The overall sensitivity of breast MRI was high [88.6%, 95% confidence interval (CI) 77.4-94.7%], combined with a specificity of 69.2% (95% CI 60.5-76.7%). The sensitivities were similar for the two test sets (P=.3), but the specificity was significantly higher for the Manufacturer X dataset (P
Resumo:
Health and safety policies may be regarded as the cornerstone for positive prevention of occupational accidents and diseases. The Health and Safety at Work, etc Act 1974 makes it a legal duty for employers to prepare and revise a written statement of a general policy with respect to the health and safety at work of employees as well as the organisation and arrangements for carrying out that policy. Despite their importance and the legal equipment to prepare them, health and safety policies have been found, in a large number of plastics processing companies (particularly small companies), to be poorly prepared, inadequately implemented and monitored. An important cause of these inadequacies is the lack of necessary health and safety knowledge and expertise to prepare, implement and monitor policies. One possible way of remedying this problem is to investigate the feasibility of using computers to develop expert system programs to simulate the health and safety (HS) experts' task of preparing the policies and assisting companies implement and monitor them. Such programs use artificial intelligence (AI) techniques to solve this sort of problems which are heuristic in nature and require symbolic reasoning. Expert systems have been used successfully in a variety of fields such as medicine and engineering. An important phase in the feasibility of development of such systems is the engineering of knowledge which consists of identifying the knowledge required, eliciting, structuring and representing it in an appropriate computer programming language.
Resumo:
The PC12 and SH-SY5Y cell models have been proposed as potentially realistic models to investigate neuronal cell toxicity. The effects of oxidative stress (OS) caused by both H2O2 and Aβ on both cell models were assessed by several methods. Cell toxicity was quantitated by measuring cell viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) viability assay, an indicator of the integrity of the electron transfer chain (ETC), and cell morphology by fluorescence and video microscopy, both of which showed OS to cause decreased viability and changes in morphology. Levels of intracellular peroxide production, and changes in glutathione and carbonyl levels were also assessed, which showed OS to cause increases in intracellular peroxide production, glutathione and carbonyl levels. Differentiated SH-SY5y cells were also employed and observed to exhibit the greatest sensitivity to toxicity. The neurotrophic factor, nerve growth factor (NGF) was shown to cause protection against OS. Cells pre-treated with NGF showed higher viability after OS, generally less apoptotic morphology, recorded less apoptotic nucleiods, generally lower levels of intracellular peroxides and changes in gene expression. The neutrophic factor, brain derived growth factor (BDNF) and ascorbic acid (AA) were also investigated. BDNF showed no specific neuroprotection, however the preliminary data does warrant further investigation. AA showed a 'janus face' showing either anti-oxidant action and neuroprotection or pro-oxidant action depending on the situation. Results showed that the toxic effects of compounds such as Aβ and H2O2 are cell type dependent, and that OS alters glutathione metabolism in neuronal cells. Following toxic insult, glutathione levels are depleted to low levels. It is herein suggested that this lowering triggers an adaptive response causing alterations in glutathione metabolism as assessed by evaluation of glutathione mRNA biosynthetic enzyme expression and the subsequent increase in glutathione peroxidase (GPX) levels.
Resumo:
Image segmentation is one of the most computationally intensive operations in image processing and computer vision. This is because a large volume of data is involved and many different features have to be extracted from the image data. This thesis is concerned with the investigation of practical issues related to the implementation of several classes of image segmentation algorithms on parallel architectures. The Transputer is used as the basic building block of hardware architectures and Occam is used as the programming language. The segmentation methods chosen for implementation are convolution, for edge-based segmentation; the Split and Merge algorithm for segmenting non-textured regions; and the Granlund method for segmentation of textured images. Three different convolution methods have been implemented. The direct method of convolution, carried out in the spatial domain, uses the array architecture. The other two methods, based on convolution in the frequency domain, require the use of the two-dimensional Fourier transform. Parallel implementations of two different Fast Fourier Transform algorithms have been developed, incorporating original solutions. For the Row-Column method the array architecture has been adopted, and for the Vector-Radix method, the pyramid architecture. The texture segmentation algorithm, for which a system-level design is given, demonstrates a further application of the Vector-Radix Fourier transform. A novel concurrent version of the quad-tree based Split and Merge algorithm has been implemented on the pyramid architecture. The performance of the developed parallel implementations is analysed. Many of the obtained speed-up and efficiency measures show values close to their respective theoretical maxima. Where appropriate comparisons are drawn between different implementations. The thesis concludes with comments on general issues related to the use of the Transputer system as a development tool for image processing applications; and on the issues related to the engineering of concurrent image processing applications.
Resumo:
Recently introduced Surface Nanoscale Axial Photonics (SNAP) is based on whispering gallery modes circulating around the optical FIber surface and undergoing slow axial propagation. In this paper we develop the theory of propagation of whispering gallery modes in a SNAP microresonator, which is formed by nanoscale asymmetric perturbation of the FIber translation symmetry and called here a nanobump microresonator. The considered modes are localized near a closed stable geodesic situated at the FIber surface. A simple condition for the stability of this geodesic corresponding to the appearance of a high Q-factor nanobump microresonator is found. The results obtained are important for engineering of SNAP devices and structures.
Resumo:
Self-adaptation is emerging as an increasingly important capability for many applications, particularly those deployed in dynamically changing environments, such as ecosystem monitoring and disaster management. One key challenge posed by Dynamically Adaptive Systems (DASs) is the need to handle changes to the requirements and corresponding behavior of a DAS in response to varying environmental conditions. Berry et al. previously identified four levels of RE that should be performed for a DAS. In this paper, we propose the Levels of RE for Modeling that reify the original levels to describe RE modeling work done by DAS developers. Specifically, we identify four types of developers: the system developer, the adaptation scenario developer, the adaptation infrastructure developer, and the DAS research community. Each level corresponds to the work of a different type of developer to construct goal model(s) specifying their requirements. We then leverage the Levels of RE for Modeling to propose two complementary processes for performing RE for a DAS. We describe our experiences with applying this approach to GridStix, an adaptive flood warning system, deployed to monitor the River Ribble in Yorkshire, England.
Resumo:
The goal of this roadmap paper is to summarize the state-of-the-art and to identify critical challenges for the systematic software engineering of self-adaptive systems. The paper is partitioned into four parts, one for each of the identified essential views of self-adaptation: modelling dimensions, requirements, engineering, and assurances. For each view, we present the state-of-the-art and the challenges that our community must address. This roadmap paper is a result of the Dagstuhl Seminar 08031 on "Software Engineering for Self-Adaptive Systems," which took place in January 2008. © 2009 Springer Berlin Heidelberg.
Resumo:
Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)1-(x+y), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Qmax = 28 Å-1) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and PO bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials. © 2013 The Owner Societies.
Resumo:
Metal-binding polymer fibres have attracted major attention for diverse applications in membranes for metal sequestration from waste waters, non-woven wound dressings, matrices for photocatalysis, and many more. This paper reports the design and synthesis of an 8-hydroxyquinoline-based zinc-binding styrenic monomer, QuiBoc. Its subsequent polymerisation by reversible addition–fragmentation chain transfer (RAFT) yielded well-defined polymers, PQuiBoc, of controllable molar masses (6 and 12 kg mol−1) with low dispersities (Đ, Mw/Mn < 1.3). Protected (PQuiBoc) and deprotected (PQuiOH) derivatives of the polymer exhibited a high zinc-binding capacity, as determined by semi-quantitative SEM/EDXA analyses, allowing the electrospinning of microfibres from a PQuiBoc/polystyrene (PS) blend without the need for removal of the protecting group. Simple “dip-coating” of the fibrous mats into ZnO suspensions showed that PQuiBoc/PS microfibres with only 20% PQuiBoc content had almost three-fold higher loadings of ZnO (29%) in comparison to neat PS microfibres (11%).
Resumo:
*Supported by the Grants AV ˇCR 101-97-02, 101-90-03, GA ˇCR 201-98-1449, and by the Grant of the Faculty of Civil Engineering of the Czech Technical University No. 2003.
Resumo:
The effect of liquid medium and its pressure on the photoluminescence of ZnO nanoparticles prepared via laser ablation of Zn targets in various water-ethanol mixtures is studied. As the ethanol content increases, the photoluminescence of the product changes, while metallic zinc is observed to emerge in nanomaterials prepared in ethanol-rich environments. The applied pressure had a less profound effect, mainly affecting materials produced in water or water-ethanol, and much less those generated in pressurized ethanol. Tuning the reactivity of the liquid and pressurizing it during laser ablation is demonstrated to be promising for tailoring the emission properties of the product.
Resumo:
A Ni-Mg-Al-Ca catalyst was prepared by a co-precipitation method for hydrogen production from polymeric materials. The prepared catalyst was designed for both the steam cracking of hydrocarbons and for the in situ absorption of CO2 via enhancement of the water-gas shift reaction. The influence of Ca content in the catalyst and catalyst calcination temperature in relation to the pyrolysis-gasification of a wood sawdust/polypropylene mixture was investigated. The highest hydrogen yield of 39.6molH2/g Ni with H2/CO ratio of 1.90 was obtained in the presence of the Ca containing catalyst of molar ratio Ni:Mg:Al:Ca=1:1:1:4, calcined at 500°C. In addition, thermogravimetric and morphology analyses of the reacted catalysts revealed that Ca introduction into the Ni-Mg-Al catalyst prevented the deposition of filamentous carbon on the catalyst surface. Furthermore, all metals were well dispersed in the catalyst after the pyrolysis-gasification process with 20-30nm of NiO sized particles observed after the gasification without significant aggregation.
Resumo:
In today’s modern manufacturing industry there is an increasing need to improve internal processes to meet diverse client needs. Process re-engineering is an important activity that is well understood by industry but its rate of application within small to medium size enterprises (SME) is less developed. Business pressures shift the focus of SMEs toward winning new projects and contracts rather than developing long-term, sustainable manufacturing processes. Variations in manufacturing processes are inevitable, but the amount of non-conformity often exceeds the acceptable levels. This paper is focused on the re-engineering of the manufacturing and verification procedure for discrete parts production with the aim of enhancing process control and product verification. The ideologies of the ‘Push’ and ‘Pull’ approaches to manufacturing are useful in the context of process re-engineering for data improvement. Currently information is pulled from the market and prominent customers, and manufacturing companies always try to make the right product, by following customer procedures that attempt to verify against specifications. This approach can result in significant quality control challenges. The aim of this paper is to highlight the importance of process re-engineering in product verification in SMEs. Leadership, culture, ownership and process management are among the main attributes required for the successful deployment of process re-engineering. This paper presents the findings from a case study showcasing the application of a modified re-engingeering method for the manufacturing and verification process. The findings from the case study indicate there are several advantages to implementing the re-engineering method outlined in this paper.
Resumo:
The multifunctional properties of carbon nanotubes (CNTs) make them a powerful platform for unprecedented innovations in a variety of practical applications. As a result of the surging growth of nanotechnology, nanotubes present a potential problem as an environmental pollutant, and as such, an efficient method for their rapid detection must be established. Here, we propose a novel type of ionic sensor complex for detecting CNTs – an organic dye that responds sensitively and selectively to CNTs with a photoluminescent signal. The complexes are formed through Coulomb attractions between dye molecules with uncompensated charges and CNTs covered with an ionic surfactant in water. We demonstrate that the photoluminescent excitation of the dye can be transferred to the nanotubes, resulting in selective and strong amplification (up to a factor of 6) of the light emission from the excitonic levels of CNTs in the near-infrared spectral range, as experimentally observed via excitation-emission photoluminescence (PL) mapping. The chirality of the nanotubes and the type of ionic surfactant used to disperse the nanotubes both strongly affect the amplification; thus, the complexation provides sensing selectivity towards specific CNTs. Additionally, neither similar uncharged dyes nor CNTs covered with neutral surfactant form such complexes. As model organic molecules, we use a family of polymethine dyes with an easily tailorable molecular structure and, consequently, tunable absorbance and PL characteristics. This provides us with a versatile tool for the controllable photonic and electronic engineering of an efficient probe for CNT detection.