639 resultados para Money market -- Australia -- Problems, exercises, etc.
Resumo:
More than 1200 wheat and 120 barley experiments conducted in Australia to examine yield responses to applied nitrogen (N) fertiliser are contained in a national database of field crops nutrient research (BFDC National Database). The yield responses are accompanied by various pre-plant soil test data to quantify plant-available N and other indicators of soil fertility status or mineralisable N. A web application (BFDC Interrogator), developed to access the database, enables construction of calibrations between relative crop yield ((Y0/Ymax) × 100) and N soil test value. In this paper we report the critical soil test values for 90% RY (CV90) and the associated critical ranges (CR90, defined as the 70% confidence interval around that CV90) derived from analysis of various subsets of these winter cereal experiments. Experimental programs were conducted throughout Australia’s main grain-production regions in different eras, starting from the 1960s in Queensland through to Victoria during 2000s. Improved management practices adopted during the period were reflected in increasing potential yields with research era, increasing from an average Ymax of 2.2 t/ha in Queensland in the 1960s and 1970s, to 3.4 t/ha in South Australia (SA) in the 1980s, to 4.3 t/ha in New South Wales (NSW) in the 1990s, and 4.2 t/ha in Victoria in the 2000s. Various sampling depths (0.1–1.2 m) and methods of quantifying available N (nitrate-N or mineral-N) from pre-planting soil samples were used and provided useful guides to the need for supplementary N. The most regionally consistent relationships were established using nitrate-N (kg/ha) in the top 0.6 m of the soil profile, with regional and seasonal variation in CV90 largely accounted for through impacts on experimental Ymax. The CV90 for nitrate-N within the top 0.6 m of the soil profile for wheat crops increased from 36 to 110 kg nitrate-N/ha as Ymax increased over the range 1 to >5 t/ha. Apparent variation in CV90 with seasonal moisture availability was entirely consistent with impacts on experimental Ymax. Further analyses of wheat trials with available grain protein (~45% of all experiments) established that grain yield and not grain N content was the major driver of crop N demand and CV90. Subsets of data explored the impact of crop management practices such as crop rotation or fallow length on both pre-planting profile mineral-N and CV90. Analyses showed that while management practices influenced profile mineral-N at planting and the likelihood and size of yield response to applied N fertiliser, they had no significant impact on CV90. A level of risk is involved with the use of pre-plant testing to determine the need for supplementary N application in all Australian dryland systems. In southern and western regions, where crop performance is based almost entirely on in-crop rainfall, this risk is offset by the management opportunity to split N applications during crop growth in response to changing crop yield potential. In northern cropping systems, where stored soil moisture at sowing is indicative of minimum yield potential, erratic winter rainfall increases uncertainty about actual yield potential as well as reducing the opportunity for effective in-season applications.
Resumo:
In plotting the variation of frequencies with geometric parameters such as side ratio, skew angle, thickness taper, etc. in detailed studies of the vibration characteristics of plates, situations are encountered such as crossing of the frequency curves or the tendency of these curves to come close together and veer away from each other. These have been generally referred to as “frequency crossings” and “transitions” respectively. The latter may preferably be referred to as “quasi-degeneracies”. In the literature there appears to be some ambiguity in the analysis and interpretation of these features. In this paper, a clarification of some of these questions as regards rectangular and skew plates is presented by making use of concepts from physics dealing with molecular vibrations.
Resumo:
This case study discusses in detail for the first time the diagnosis and management of a case of leishmaniosis in a dog imported to Australia. The dog presented with epistaxis and a non-regenerative anaemia five years after being imported from Europe. Protozoa were identified within macrophages in bone marrow and splenic cytology. A Leishmania indirect fluorescent antibody test was performed and was positive while an Ehrlichia canis antibody test was negative. Polymerase chain reaction of the ITS-1 and ITS-2 regions of skin, lymph node, spleen and bone marrow were all positive for Leishmania infantum. The dog was treated with amphotericin B with a strong clinical response. The importance of thorough diagnostics in non-endemic areas, particularly Australia, is discussed. Treatment with amphotericin B is discussed. Vigilance, disease reporting and response frameworks are recommended for non-endemic areas. © 2014 Elsevier B.V.
Resumo:
The roles and epidemiological features of tick-borne protozoans are not well elicited in wildlife. Babesia spp. are documented in many domestic animals, including cattle, horses, pigs, dogs and cats. Three cases affecting eastern grey kangaroos are described. The kangaroos exhibited neurological signs, depression and marked anaemia, and microscopic examination of blood smears revealed intraerythrocytic piroplasms. One to seven intraerythrocytic spherical, oval, pyriform and irregularly-shaped parasites consistent with Babesia spp. were seen in the blood smears and the percentage of infected erythrocytes was estimated to be approximately 7% in each case. Data suggest that the tick vector for this kangaroo Babesia sp. is a Haemaphysalis species. For Case 2, ultrastructural examination of the erythrocytes of the renal capillaries showed parasites resembling Babesia spp. and 18 of 33 erythrocytes were infected. DNA sequencing of the amplified 18S rDNA confirmed that the observed intraerythrocytic piroplasms belong to the genus Babesia. The phylogenetic position of this new kangaroo Babesia sp. (de novo Babesia macropus), as a sister species to the new Australian woylie Babesia sp., suggests a close affinity to the described Afro-Eurasian species Babesia orientalis and Babesia occultans suggesting perhaps a common ancestor for the Babesia in kangaroos. © 2012 Australian Society for Parasitology.
Resumo:
The leaf-tying moth Hypocosmia pyrochroma Jones (Lepidoptera: Pyralidae), a native of sub tropical South America, has been introduced as a biological control agent for cat’s claw creeper, Dolichandra unguis-cati (L.) Lohman (Bignoniaceae), in Australia and South Africa. So far there has been no evidence of its field establishment in either country. A narrow temperature tolerance is a potential limiting factor for the establishment of weed biological control insects in novel habitats. In this study, we evaluated the effect of seven constant temperatures (12–40 °C) on the survival and development of H. pyrochroma in temperature-controlled cabinets. Temperatures between 20 and 30 °C were the most favorable for adult survival, oviposition, egg hatching, and larval and pupal development. Adult survival (12–40 °C) and egg development (15–35 °C) showed tolerance for wider temperature ranges than oviposition, and larval and pupal development, which were all negatively affected by both high (>30 °C) and low (<20 °C) temperatures. The degree-day (DD) requirement to complete a generation was estimated as 877 above a threshold temperature of 12 °C. Based on DD requirements and an obligatory winter diapause of pupae from mid-autumn to mid-spring, the potential number of generations (egg to adult) the leaf-tying moth can complete in a year in Australia or South Africa range from one to three. A climate-matching model predicted that the inland regions of both Australia and South Africa are less favorable for H. pyrochroma than the coastal areas. The study suggested that H. pyrochroma is more likely to establish in the coastal areas of Australia where most of the cat’s claw creeper infestations occur, than in South Africa where most of the cat’s claw creeper infestations are inland.
Resumo:
Purpose This study investigated how nitrogen (N) nutrition and key physiological processes varied under changed water and nitrogen competition resulting from different weed control and fertilisation treatments in a 2-year-old F1 hybrid (Pinus elliottii Engelm var. elliottii × P. caribaea var. hondurensis Barr. ex Golf.) plantation on a grey podzolic soil type, in Southeast Queensland. Materials and methods The study integrated a range of measures including growth variables (diameter at ground level (DGL), diameter at breast height (DBH) and height (H)), foliar variables (including foliar N concentration, foliar δ13C and δ15N) and physiological variables (including photosynthesis (An), stomatal conductance (gs), transpiration (E), intrinsic water use efficiency (WUEi) (A/gs) and xylem pressure potential (ΨXPP)) to better understand the mechanisms influencing growth under different weed control and fertilisation treatments. Five levels of weed control were applied: standard (routine), luxury, intermediate, mechanical and nil weed control, all with routine fertilisation plus an additional treatment, routine weed control and luxury fertilisation. Relative weed cover was assessed at 0.8, 1.1 and 1.6 years after plantation establishment to monitor the effectiveness of weed control treatments. Soil investigation included soil ammonium (NH4 +-N), nitrate (NO3 −-N), potentially mineralizable N (PMN), gravimetric soil moisture content (MC), hot water extractable organic carbon (HWETC), hot water extractable total N (HWETN), total C, total N, stable C isotope composition (δ13C), stable N isotope composition (δ15N), total P and extractable K. Results and discussion There were significant relationships between foliar N concentrations and relative weed cover and between tree growth and foliar N concentration or foliar δ15N, but initial site preparation practices also increased soil N transformations in the planting rows reducing the observable effects of weed control on foliar δ15N. A positive relationship between foliar N concentration and foliar δ13C or photosynthesis indicated that increased N availability to trees positively influenced non-stomatal limitations to photosynthesis. However, trees with increased foliar N concentrations and photosynthesis were negatively related to xylem pressure potential in the afternoons which enhanced stomatal limitations to photosynthesis and WUEi. Conclusions Luxury and intermediate weed control and luxury fertilisation positively influenced growth at early establishment by reducing the competition for water and N resources. This influenced fundamental key physiological processes such as the relationships between foliar N concentration, A n, E, gs and ΨXPP. Results also confirmed that time from cultivation is an important factor influencing the effectiveness of using foliar δ15N as an indicator of soil N transformations.
Resumo:
Purpose We investigated the effects of weed control and fertilization at early establishment on foliar stable carbon (δ13C) and nitrogen (N) isotope (δ15N) compositions, foliar N concentration, tree growth and biomass, relative weed cover and other physiological traits in a 2-year old F1 hybrid (Pinus elliottii var. elliottii (Engelm) × Pinus caribaea var. hondurensis (Barr. ex Golf.)) plantation grown on a yellow earth in southeast Queensland of subtropical Australia. Materials and methods Treatments included routine weed control, luxury weed control, intermediate weed control, mechanical weed control, nil weed control, and routine and luxury fertilization in a randomised complete block design. Initial soil nutrition and soil fertility parameters included (hot water extractable organic carbon (C) and total nitrogen (N), total C and N, C/N ratio, labile N pools (nitrate (NO3 −) and ammonium (NH4 +)), extractable potassium (K+)), soil δ15N and δ13C. Relative weed cover, foliar N concentrations, tree growth rate and physiological parameters including photosynthesis, stomatal conductance, photosynthetic nitrogen use efficiency, foliar δ15N and foliar δ13C were also measured at early establishment. Results and discussion Foliar N concentration at 1.25 years was significantly different amongst the weed control treatments and was negatively correlated to the relative weed cover at 1.1 years. Foliar N concentration was also positively correlated to foliar δ15N and foliar δ13C, tree height, height growth rates and tree biomass. Foliar δ15N was negatively correlated to the relative weed cover at 0.8 and 1.1 years. The physiological measurements indicated that luxury fertilization and increasing weed competition on these soils decreased leaf xylem pressure potential (Ψxpp) when compared to the other treatments. Conclusions These results indicate how increasing N resources and weed competition have implications for tree N and water use at establishment in F1 hybrid plantations of southeast Queensland, Australia. These results suggest the desirability of weed control, in the inter-planting row, in the first year to maximise site N and water resources available for seedling growth. It also showed the need to avoid over-fertilisation, which interfered with the balance between available N and water on these soils.
Resumo:
Babul scale Anomalococcus indicus Ramakrishna Ayyar, a major pest of Vachellia nilotica (L.f.) P.J.H. Hurter & Mabb. on the Indian subcontinent, has been identified as a potential biocontrol agent for prickly acacia V. nilotica subsp. indica (Benth.) Kyal. & Boatwr. in Australia and was imported from southern India for detailed assessment. The life history of A. indicus under controlled glasshouse conditions was determined as a part of this assessment. Consistent with other scale species, A. indicus has a distinct sexual dimorphism which becomes apparent during the second instar. Females have three instars, developing into sexually mature nymphs after 52 days. The generation time from egg to egg was 89 days. Females are ovoviviparous, ovipositing mature eggs into a cavity underneath their body. An average of 802 +/- 114 offspring were produced per female. Reproductive output was closely associated with female size; larger females produced more than 1200 offspring. Crawlers emerged from beneath the female after an indeterminate period of inactivity. They have the only life stage at which A. indicus can disperse, though the majority settle close to their parent female forming aggregative distributions. In the absence of food, most crawlers died within three days. Males took 62 days to develop through five instars. Unlike females, males underwent complete metamorphosis. Adult males were small and winged, and lived for less than a day. Parthenogenesis was not observed in females excluded from males. The life history of A. indicus allows it to complement other biological control agents already established on prickly acacia in Australia.
Resumo:
Echinochloa colona is the most common grass weed of summer fallows in the grain-cropping systems of the subtropical region of Australia. Glyphosate is the most commonly used herbicide for summer grass control in fallows in this region. The world's first population of glyphosate-resistant E. colona was confirmed in Australia in 2007 and, since then, >70 populations have been confirmed to be resistant in the subtropical region. The efficacy of alternative herbicides on glyphosate-susceptible populations was evaluated in three field experiments and on both glyphosate-susceptible and glyphosate-resistant populations in two pot experiments. The treatments were knockdown and pre-emergence herbicides that were applied as a single application (alone or in a mixture) or as part of a sequential application to weeds at different growth stages. Glyphosate at 720 g ai ha−1 provided good control of small glyphosate-susceptible plants (pre- to early tillering), but was not always effective on larger susceptible plants. Paraquat was effective and the most reliable when applied at 500 g ai ha−1 on small plants, irrespective of the glyphosate resistance status. The sequential application of glyphosate followed by paraquat provided 96–100% control across all experiments, irrespective of the growth stage, and the addition of metolachlor and metolachlor + atrazine to glyphosate or paraquat significantly reduced subsequent emergence. Herbicide treatments have been identified that provide excellent control of small E. colona plants, irrespective of their glyphosate resistance status. These tactics of knockdown herbicides, sequential applications and pre-emergence herbicides should be incorporated into an integrated weed management strategy in order to greatly improve E. colona control, reduce seed production by the sprayed survivors and to minimize the risk of the further development of glyphosate resistance.
Resumo:
In irrigated cropping, as with any other industry, profit and risk are inter-dependent. An increase in profit would normally coincide with an increase in risk, and this means that risk can be traded for profit. It is desirable to manage a farm so that it achieves the maximum possible profit for the desired level of risk. This paper identifies risk-efficient cropping strategies that allocate land and water between crop enterprises for a case study of an irrigated farm in Southern Queensland, Australia. This is achieved by applying stochastic frontier analysis to the output of a simulation experiment. The simulation experiment involved changes to the levels of business risk by systematically varying the crop sowing rules in a bioeconomic model of the case study farm. This model utilises the multi-field capability of the process based Agricultural Production System Simulator (APSIM) and is parameterised using data collected from interviews with a collaborating farmer. We found sowing rules that increased the farm area sown to cotton caused the greatest increase in risk-efficiency. Increasing maize area also improved risk-efficiency but to a lesser extent than cotton. Sowing rules that increased the areas sown to wheat reduced the risk-efficiency of the farm business. Sowing rules were identified that had the potential to improve the expected farm profit by ca. $50,000 Annually, without significantly increasing risk. The concept of the shadow price of risk is discussed and an expression is derived from the estimated frontier equation that quantifies the trade-off between profit and risk.
Resumo:
Background Children’s sleep problems and self-regulation problems have been independently associated with poorer adjustment to school, but there has been limited exploration of longitudinal early childhood profiles that include both indicators. Aims This study explores the normative developmental pathway for sleep problems and self-regulation across early childhood, and investigates whether departure from the normative pathway is associated with later social-emotional adjustment to school. Sample This study involved 2880 children participating in the Growing Up in Australia: The Longitudinal Study of Australian Children (LSAC) – Infant Cohort from Wave 1 (0-1 years) to Wave 4 (6-7 years). Method Mothers reported on children’s sleep problems, emotional, and attentional self-regulation at three time points from birth to 5 years. Teachers reported on children’s social-emotional adjustment to school at 6-7 years. Latent profile analysis was used to establish person-centred longitudinal profiles. Results Three profiles were found. The normative profile (69%) had consistently average or higher emotional and attentional regulation scores and sleep problems that steadily reduced from birth to 5. The remaining 31% of children were members of two non-normative self-regulation profiles, both characterised by escalating sleep problems across early childhood and below mean self-regulation. Non-normative group membership was associated with higher teacher-reported hyperactivity and emotional problems, and poorer classroom self-regulation and prosocial skills. Conclusion Early childhood profiles of self-regulation that include sleep problems offer a way to identify children at risk of poor school adjustment. Children with escalating early childhood sleep problems should be considered an important target group for school transition interventions.
Resumo:
With one of the most concentrated food retail sectors in the world dominated by the supermarket duopoly, the barriers to making it easy to buy local food in Australia are significant. It is time for Australia to learn from the example of other countries and provide assistance to rebuild local food systems.” – The Australian Greens. However, the percentage of market share controlled by the two major supermarkets, Coles and Woolworths, depends on which groceries you include.
Resumo:
The Cotton Catchment Communities Cooperative Research Centre began during a period of rapid uptake of Bollgard II® cotton, which contains genes to express two Bt proteins that control the primary pests of cotton in Australia, Helicoverpa armigera and H. punctigera. The dramatic uptake of this technology presumably resulted in strong selection pressure for resistance in Helicoverpa spp. against the Bt proteins. The discovery of higher than expected levels of resistance in both species against one of the proteins in Bollgard II® cotton (Cry2Ab) led to significant re-evaluation of the resistance management plan developed for this technology, which was a core area of research for the Cotton CRC. The uptake of Bollgard II® cotton also led to a substantial decline in pesticide applications against Helicoverpa spp. (from 10–14 to 0–3 applications per season). The low spray environment allowed some pests not controlled by the Bt proteins to emerge as more significant pests, especially sucking species such as Creontiades dilutus and Nezara viridula. A range of other minor pests have also sporadically arisen as problems. Lack of knowledge and experience with these pests created uncertainty and encouraged insecticide use, which threatened to undermine the gains made with Bollgard II® cotton. Here we chronicle the achievements of the Cotton CRC in providing the industry with new knowledge and management strategies for these pests.
Resumo:
This article reviews research coordinated by the Australian Cotton Cooperative Research Centre (CRC) that investigated production issues for irrigated cotton at five targeted sites in tropical northern Australia, north of 21°S from Broome in Western Australia to the Burdekin in Queensland. The biotic and abiotic issues for cotton production were investigated with the aim of defining the potential limitations and, where appropriate, building a sustainable technical foundation for a future industry if it were to follow. Key lessons from the Cotton CRC research effort were: (1) limitations thought to be associated with cotton production in northern Australia can be overcome by developing a deep understanding of biotic and environmental constraints, then tailoring and validating production practices; and (2) transplanting of southern farming practices without consideration of local pest, soil and climatic factors is unlikely to succeed. Two grower guides were published which synthesised the research for new growers into a rational blueprint for sustainable cotton production in each region. In addition to crop production and environmental impact issues, the project identified the following as key elements needed to establish new cropping regions in tropical Australia: rigorous quantification of suitable land and sustainable water yields; support from governments; a long-term funding model for locally based research; the inclusion of traditional owners; and development of human capacity.
Resumo:
The cropping region of northern Australia has a diverse range of cropping systems and weed flora. A fallow phase is commonly required between crops to enable the accumulation of stored soil water in these farming systems dominated by reduced tillage. During the fallow phase, weed control is important and is heavily reliant on herbicides. The most commonly used herbicide has been glyphosate. As a result of over-reliance on glyphosate, there are now seven confirmed glyphosate-resistant weeds and several glyphosate-tolerant species common in the region. As a result, the control of summer fallow weeds is become more complex. This paper outlines project work investigating improved weed control for summer fallows in the northern cropping region. Areas of research include weed ecology, chemical and non-chemical tactics, glyphosate resistance and resistance surveys. The project also has an economic and extension component. As a result of our research we have a better understanding of the ecology of major northern weeds and spread of glyphosate resistance in the region. We have identified and defined alternative herbicide and non-chemical approaches for the effective control of summer fallow weeds and have extended our research effectively to industry.