908 resultados para Molecular and Cellular Biology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the incorporation of cis-9,trans-11 conjugated linoleic acid (c9,t11 CLA) and trans-10,cis-12-CLA (t10,c12 CLA) into plasma and peripheral blood mononuclear cell (PBMC) lipids when consumed as supplements highly enriched in these isomers. Healthy men (n = 49, age 31 +/- 8 years) consumed one, two, and four capsules containing similar to600 mg of either c9,t11 CIA or t10,c12 CLA per capsule for sequential 8 week periods followed by a 6 week washout before consuming the alternative isomer. Both isomers were incorporated in a dosedependent manner into plasma phosphatidylcholine (PC) (c9,t11 CLA r = 0.779, t10,c12 CLA r = 0.738; P < 0.0001) and cholesteryl ester (CE) (c9,t11 CLA r = 0.706, t10,c12 CLA r = 0.788; P < 0.0001). Only t10,c12 CLA was enriched in plasma nonesterified fatty acids. Both c9,t11 CIA and t10,c12 CLA were incorporated linearly into PBMC total lipids (r = 0.285 and r = 0.273, respectively; P < 0.0005). The highest concentrations of c9,t11 CLA and t10,c12 CLA in PBMC lipids were 3- to 4-fold lower than those in plasma PC and CE. These data suggest that the level of intake is a major determinant of plasma and PBMC CLA content, although PBMCs appear to incorporate both CLA isomers less readily.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asynchronous Optical Sampling has the potential to improve signal to noise ratio in THz transient sperctrometry. The design of an inexpensive control scheme for synchronising two femtosecond pulse frequency comb generators at an offset frequency of 20 kHz is discussed. The suitability of a range of signal processing schemes adopted from the Systems Identification and Control Theory community for further processing recorded THz transients in the time and frequency domain are outlined. Finally, possibilities for femtosecond pulse shaping using genetic algorithms are mentioned.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of cell cycle dependent molecules in controlling the switch from cardiac myocyte hyperplasia to hypertrophy remains unclear, although in the rat this process occurs between day 3 and 4 after birth. In this study we have determined (1) cell cycle profiles by fluorescence activated cell sorting (FACS); and (2) expressions, co-expressions and activities of a number of cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors by reverse transcriptase-polymerase chain reaction (RT-PCR), immunoblotting andin vitrokinase assays in freshly isolated rat cardiac myocytes obtained from 2, 3, 4 and 5-day-old animals. The percentage of myocytes found in the S phase of the cell cycle decreased significantly during the transition from hyperplasia to hypertrophy (5.5, 3.5, 2.3 and 1.9% of cells in 2-, 3-, 4- and 5-day-old myocytes, respectively,P<0.05), concomitant with a significant increase in the percentage of G0/G1phase cells. At the molecular level, the expressions and activities of G1/S and G2/M phase acting cyclins and CDKs were downregulated significantly during the transition from hyperplasia to hypertrophy, whereas the expressions and activities of G1phase acting cyclins and CDKs were upregulated significantly during this transition. In addition, p21CIP1- and p27KIP1- associated CDK kinase activities remained relatively constant when histone H1 was used as a substrate, whereas phosphorylation of the retinoblastoma protein was upregulated significantly during the transition from hyperplasia to hypertrophy. Thus, there is a progressive and significant G0/G1phase blockade during the transition from myocyte hyperplasia to hypertrophy. Whilst CDK2 and cdc2 may be pivotal in the withdrawal of cardiac myocytes from the cell cycle, CDK4 and CDK6 may be critical for maintaining hypertrophic growth of the myocyte during development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular mechanisms responsible for the alterations in proliferative capacity of cardiac myocytes during development remain unknown; however, cell cycle dependent molecules may be involved. We have determined the expression of cyclins A, D1–3and E, and cyclin-dependent kinases (CDKs) 2, 4, 5 and 6 and cdc2 in freshly isolated rat cardiac myocytes from fetal (18 days gestation), neonatal (2 days post-natal) and adult animals by immunoblotting. Our results show a dramatic decrease in expression of these proteins during normal cardiac development, such that levels are highest in fetal myocytes but are significantly down-regulated in adult cells (P<0.05, in each case). We also have determined thein vitrokinase activities of cdc2, CDK2, CDK4, CDK5 and CDK6 immunocomplexes in fetal, neonatal and adult myocytes. There was a consistent and significant loss of cdc2, CDK2, CDK4 and CDK6 kinase activities in adult cardiac cell lysates (5.3-, 10.6-, 1.5- and 1.9-fold decreases, respectively) when compared to neonatal samples (P<0.05); CDK5 activity showed a similar trend but failed to reach significance. In conclusion, our results show that the expression and activities of various positive regulators of the cell cycle are down-regulated significantly during development of the cardiac myocyte, concomitant with the loss of proliferative capacity in adult myocytes. Down-regulation of these proteins may be pivotal in the withdrawal of the cardiac myocyte from the cell cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transforming growth factorβ(TGFβ) superfamily plays an important role in the myocardial response to hypertrophy. We have investigated the protein expression of TGFβ1,β2andβ3in left ventricular tissue, and determined their subcellular distribution in myocytes by immunoblotting and immunocytochemistry during the development of left ventricular hypertrophy (LVH), using isoform specific antibodies to TGFβ1,β2andβ3. LVH was produced in rats by aortic constriction (AC) and LV tissue was obtained at days (d)0, 1, 3, 7, 14, 21 and 42 following operation. Compared with age matched sham-operated controls (SH), TGFβ1levels in LV tissue of AC rats increased significantly from d1–d14 (P<0.03) concomitant with the adaptive growth of LV tissue. In contrast, TGFβ3levels decreased in LV tissue of AC rats from d3 post-operation (significant from d14–d42,P<0.03). No significant difference in TGFβ2levels were observed from SH and AC rats after operation. Antibodies to TGFβ1stained intercalated disks, sarcolemmal membranes and cytoplasm, but not nuclei, of cardiomyocytes on LV sections from untreated and SH rats. However, a trans-localisation of TGFβ1to the nuclei of cardiomyocytes was observed in AC hearts. Antibodies to TGFβ3stained T tubules, cytoplasm and the nuclei of cardiomyocytes from untreated and SH rats. However, by d7 post-AC operation, TGFβ3expression was lost rapidly from nuclei of cardiomyocytes followed by a reduction in total TGFβ3immunofluorescence in myocytes. Antibodies to TGFβ2stained sarcolemmal membranes of cardiomyocytes from both SH and AC rats without significant difference between groups. Thus, the differential pattern of protein expression and subcellular distribution of TGFβ1,β2andβ3in myocytes during the development of LVH suggests that these molecules play different roles in the response of cardiomyocytes to LVH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined Na+–H+exchanger isoform 1 (NHE-1) mRNA expression in ventricular myocardium and its correlation with sarcolemmal NHE activity in isolated ventricular myocytes, during postnatal development in the rat. The expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA did not change in ventricular myocardium between 2 and 42 days after birth. Therefore, at seven time points within that age range, GAPDH expression was used to normalize NHE-1 mRNA levels, as determined by reverse transcription polymerase chain reaction analysis. There was a progressive five-fold reduction in NHE-1 mRNA expression in ventricular myocardium from 2 days to 42 days of age. As an index of NHE activity, acid efflux rates (JH) were determined in single neonatal (2–4-day-old) and adult (42-day-old) ventricular myocytes (n=16/group) loaded with the pH fluoroprobe carboxy-seminaphthorhodafluor-1. In HEPES-buffered medium, basal intracellular pH (pHi) was similar at 7.28±0.02 in neonatal and 7.31±0.02 in adult myocytes, but intrinsic buffering power was lower in the former age group. The rate at which pHirecovered from a similar acid load was significantly greater in neonatal than in adult myocytes (0.36±0.07v0.16±0.02 pH units/min at pHi=6.8). This was reflected by a significantly greaterJH(22±4v9±1 pmol/cm2/s at pHi=6.8), indicating greater sarcolemmal NHE activity in neonatal myocytes. The concomitant reductions in tissue NHE-1 mRNA expression and sarcolemmal NHE activity suggest that myocardial NHE-1 is subject to regulation at the mRNA level during postnatal development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The APOC3 −2854T>G polymorphism lies in the APOC3–A4 intergenic region. In a group of healthy adults, this polymorphism was associated with circulating triglycerides, with 55% lower fasting levels in the homozygous wild-type (TT) compared to the homozygous rare allele (GG) genotype. Age and gender had a significant impact on genotype–triglyceride interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Granulosa cells are the main ovarian source of inhibins, activins and activin-binding protein (follistatin) while germ (oogonia, oocytes) and somatic (theca, granulosa, luteal) cells express activin receptors, signaling components and inhibin co-receptor (betaglycan). Activins are implicated in various intra-ovarian roles including germ cell survival and primordial follicle assembly; follicle growth from preantral to mid-antral stages; suppression of thecal androgen production; promotion of granulosa cell proliferation, FSHR and CYP19A1 expression; enhancement of oocyte developmental competence; retardation of follicle luteinization and/or atresia and involvement in luteolysis. Inhibins (primarily inhibin A) are produced in greatest amounts by preovulatory follicles (and corpus luteum in primates) and suppress FSH secretion through endocrine negative feedback. Together with follistatin, inhibins act locally to oppose auto-/paracrine activin (and BMP) signaling thus modulating many of the above processes. The balance between activin-inhibin shifts during follicle development with activin signalling prevailing at earlier stages but declining as inhibin and betaglycan expression rise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since megakaryocytes are the cellular precursors of platelets we have investigated whether they share responses to platelet agonists, in particular collagen. Although previous studies have reported responses to thrombin in non-human megakaryocytes, through studies of single cell calcium responses and protein tyrosine-phosphorylation we demonstrate for the first time that both isolated human megakaryocytes and CD41/61-positive megakaryocytes derived in culture from CD34+ cells share responses to the platelet agonists collagen, collagen-related peptide and thrombin. The responses to either collagen or CRP were seen only in the most mature megakaryocytes and not in megakaryocyte-like cell lines, suggesting that the response to collagen is a characteristic developed late during megakaryocyte differentiation. These primary cells offer the opportunity to use many molecular and cellular techniques to study and manipulate signalling events in response to platelet receptor agonists, which cannot be performed in the small, anucleate platelet itself.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Periods of chronic hypoxia, which can arise from numerous cardiorespiratory disorders, predispose individuals to the development of dementias, particularly Alzheimer's disease (AD). AD is characterized in part by the increased production of amyloid beta peptide (Abeta), which forms the extracellular plaques by which the disease can be identified post mortem. Numerous studies have now shown that hypoxia, even in vitro, can increase production of Abeta in different cell types. Evidence has been produced to indicate hypoxia alters both expression of the Abeta precursor, APP, and also the expression of the secretase enzymes, which cleave Abeta from APP. Other studies implicate reduced Abeta degradation as a possible means by which hypoxia increases Abeta levels. Such variability may be attributable to cell-specific responses to hypoxia. Further evidence indicates that some, but not all of the cellular adaptations to chronic hypoxia (including alteration of Ca(2+) homeostasis) require Abeta formation. However, other aspects of hypoxic remodeling of cell function appear to occur independently of this process. The molecular and cellular responses to hypoxia contribute to our understanding of the clinical association of hypoxia and increased incidence of AD. However, it remains to be determined whether inhibition of one or more of the effects of hypoxia may be of benefit in arresting the development of this neurodegenerative disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Murine transgenesis using cardioselective promoters has become increasingly common in studies of cardiac hypertrophy and heart failure, with expression mediated by pronuclear microinjection being the commonest format. Without wishing to decry their usefulness, in our view, such studies are not necessarily as unambiguous as sometimes portrayed and clarity is not always their consequence. We describe broadly the types of approach undertaken in the heart and point out some of the drawbacks. We provide three arbitrarily-chosen examples where, in spite of a number of often-independent studies, no consensus has yet been achieved. These include glycogen synthase kinase 3, the extracellular signal-regulated kinase pathway and the ryanodine receptor 2. We believe that the transgenic approach should not be viewed in an empyreal light and, depending on the questions asked, we suggest that other experimental systems provide equal (or even more) valuable outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by ptosis, dysphagia and proximal limb weakness. Autosomal-dominant OPMD is caused by a short (GCG)8–13 expansions within the first exon of the poly(A)-binding protein nuclear 1 gene (PABPN1), leading to an expanded polyalanine tract in the mutated protein. Expanded PABPN1 forms insoluble aggregates in the nuclei of skeletal muscle fibres. In order to gain insight into the different physiological processes affected in OPMD muscles, we have used a transgenic mouse model of OPMD (A17.1) and performed transcriptomic studies combined with a detailed phenotypic characterization of this model at three time points. The transcriptomic analysis revealed a massive gene deregulation in the A17.1 mice, among which we identified a significant deregulation of pathways associated with muscle atrophy. Using a mathematical model for progression, we have identified that one-third of the progressive genes were also associated with muscle atrophy. Functional and histological analysis of the skeletal muscle of this mouse model confirmed a severe and progressive muscular atrophy associated with a reduction in muscle strength. Moreover, muscle atrophy in the A17.1 mice was restricted to fast glycolytic fibres, containing a large number of intranuclear inclusions (INIs). The soleus muscle and, in particular, oxidative fibres were spared, even though they contained INIs albeit to a lesser degree. These results demonstrate a fibre-type specificity of muscle atrophy in this OPMD model. This study improves our understanding of the biological pathways modified in OPMD to identify potential biomarkers and new therapeutic targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The readily available complex 1,1-dibromo-2-ferrocenylethylene provides a convenient entry point for the preparation of a wide range of cross-conjugated 1,1-bis(alkynyl)-2-ferrocenylethenes through simple Pd(0)/Cu(I)-mediated cross-coupling reactions with 1-alkynes. The ferrocene moiety in compounds of the general form FcCHC(CCR)2 is essentially electronically isolated from the cross-conjugated π system, as evidenced by IR and UV−vis spectroelectrochemical experiments and quantum chemical calculations. In contrast to the other examples which give stable ferrocenium derivatives upon electrochemical oxidation, the aniline derivatives [FcCHC(CCC6H4NH2-4)2]+ and [FcCHC(CCC6H4NMe2-4)2]+ proved to be unstable on the time scale of the spectroelectrochemical experiments, leading to passivation of the electrode surface over time. There is no significant thermodynamic stabilization of the radical anion [FcCHC(CCC6H4NO2-4)2]− relative to the neutral and dianionic analogues, although the dianion [FcCHC(CCC6H4NO2- 4)2]2− could be studied as a relatively chemically stable species and is well described in terms of two linked nitrophenyl radicals. The capacity to introduce a relatively isolated point charge at the periphery of the cross-conjugated π system appears to make these complexes useful templates for the construction of electrochemically gated quantum interference transistors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barley can be classified into three major agronomic types, based on its seasonal growth habit (SGH): spring, winter and alternative. Winter varieties require exposure to vernalization to promote subsequent flowering and are autumn-sown. Spring varieties proceed to flowering in the absence of vernalization and are sown in the spring. The ‘alternative’ (also known as ‘facultative’) SGH is only loosely defined and can be sown in autumn or spring. Here, we investigate the molecular genetic basis of alternative barley. Analysis of the major barley vernalization (VRN-H1, VRN-H2) and photoperiod (PPD-H1, PPD-H2) response genes in a collection of 386 varieties found alternative SGH to be characterized by specific allelic combinations. Spring varieties possessed spring loci at one or both of the vernalization response loci, combined with long-day non-responsive ppd-H1 alleles and wild-type alleles at the short-day photoperiod response locus, PPD-H2. Winter varieties possessed winter alleles at both vernalization loci, in combination with the mutant ppd-H2 allele conferring delayed flowering under short-day photoperiods. In contrast, all alternative varieties investigated possessed a single spring allele (either at VRN-H1 or at VRN-H2) combined with mutant ppd-H2 alleles. This allelic combination is found only in alternative types and is diagnostic for alternative SGH in the collection studied. Analysis of flowering time under controlled environment found alternative varieties flowered later than spring control lines, with the difference most pronounced under short-day photoperiods. This work provides genetic characterization of the alternative SGH phenotype, allowing precise manipulation of SGH and flowering time within breeding programmes, and provides the molecular tools for classification of all three SGH categories within national variety registration processes.