899 resultados para Models performance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much of the current healthcare financial literature addresses the concern of government officials, the public, and healthcare providers regarding the need for control of health care costs. The literature suggests that attitudes of hospital department managers toward their role in financial management affects their ability to effect favorable financial results.^ There were several objectives of the dissertation: (1) To identify whether or not there exists a relationship between the attitude/role perception of hospital managers and the financial performance of their departments. (2) To compile a descriptive survey data base of key factors identified in the financial literature from individual hospitals. (3) To compile a brief descriptive survey of hospital managers' financial management background and training (both formal and informal). (4) To conduct an attitude assessment/role perception survey regarding the importance or relevance of a suggested financial management role set (i.e., issues discussed in the current literature) as viewed by the selected hospital managers and their matched administrators. (5) To propose plausible theoretical models and statistical tests of seven proposed hypotheses.^ The statistical results of a variety of methods generally suggested, for the sample population, that the null hypothesis should not be rejected concerning the relationships between a department manager's financial attitudes and role perceptions and the resultant financial performance.^ The fact that the results of this study did not suggest that there was a significant relationship which existed between role perception and financial performance does not necessarily indicate that the theories supporting such a relationship in literature are false, not that such a relationship does not exist. Several alternative theories were postulated to explain the apparent lack of statistical relationship, and suggestions for refinement and/or improvement of further research were discussed. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex diseases, such as cancer, are caused by various genetic and environmental factors, and their interactions. Joint analysis of these factors and their interactions would increase the power to detect risk factors but is statistically. Bayesian generalized linear models using student-t prior distributions on coefficients, is a novel method to simultaneously analyze genetic factors, environmental factors, and interactions. I performed simulation studies using three different disease models and demonstrated that the variable selection performance of Bayesian generalized linear models is comparable to that of Bayesian stochastic search variable selection, an improved method for variable selection when compared to standard methods. I further evaluated the variable selection performance of Bayesian generalized linear models using different numbers of candidate covariates and different sample sizes, and provided a guideline for required sample size to achieve a high power of variable selection using Bayesian generalize linear models, considering different scales of number of candidate covariates. ^ Polymorphisms in folate metabolism genes and nutritional factors have been previously associated with lung cancer risk. In this study, I simultaneously analyzed 115 tag SNPs in folate metabolism genes, 14 nutritional factors, and all possible genetic-nutritional interactions from 1239 lung cancer cases and 1692 controls using Bayesian generalized linear models stratified by never, former, and current smoking status. SNPs in MTRR were significantly associated with lung cancer risk across never, former, and current smokers. In never smokers, three SNPs in TYMS and three gene-nutrient interactions, including an interaction between SHMT1 and vitamin B12, an interaction between MTRR and total fat intake, and an interaction between MTR and alcohol use, were also identified as associated with lung cancer risk. These lung cancer risk factors are worthy of further investigation.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In light of the new healthcare regulations, hospitals are increasingly reevaluating their IT integration strategies to meet expanded healthcare information exchange requirements. Nevertheless, hospital executives do not have all the information they need to differentiate between the available strategies and recognize what may better fit their organizational needs. ^ In the interest of providing the desired information, this study explored the relationships between hospital financial performance, integration strategy selection, and strategy change. The integration strategies examined – applied as binary logistic regression dependent variables and in the order from most to least integrated – were Single-Vendor (SV), Best-of-Suite (BoS), and Best-of-Breed (BoB). In addition, the financial measurements adopted as independent variables for the models were two administrative labor efficiency and six industry standard financial ratios designed to provide a broad proxy of hospital financial performance. Furthermore, descriptive statistical analyses were carried out to evaluate recent trends in hospital integration strategy change. Overall six research questions were proposed for this study. ^ The first research question sought to answer if financial performance was related to the selection of integration strategies. The next questions, however, explored whether hospitals were more likely to change strategies or remain the same when there was no external stimulus to change, and if they did change, they would prefer strategies closer to the existing ones. These were followed by a question that inquired if financial performance was also related to strategy change. Nevertheless, rounding up the questions, the last two probed if the new Health Information Technology for Economic and Clinical Health (HITECH) Act had any impact on the frequency and direction of strategy change. ^ The results confirmed that financial performance is related to both IT integration strategy selection and strategy change, while concurred with prior studies that suggested hospital and environmental characteristics are associated factors as well. Specifically this study noted that the most integrated SV strategy is related to increased administrative labor efficiency and the hybrid BoS strategy is associated with improved financial health (based on operating margin and equity financing ratios). On the other hand, no financial indicators were found to be related to the least integrated BoB strategy, except for short-term liquidity (current ratio) when involving strategy change. ^ Ultimately, this study concluded that when making IT integration strategy decisions hospitals closely follow the resource dependence view of minimizing uncertainty. As each integration strategy may favor certain organizational characteristics, hospitals traditionally preferred not to make strategy changes and when they did, they selected strategies that were more closely related to the existing ones. However, as new regulations further heighten revenue uncertainty while require increased information integration, moving forward, as evidence already suggests a growing trend of organizations shifting towards more integrated strategies, hospitals may be more limited in their strategy selection choices.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. In 2009, the International Expert Committee recommended the use of HbA1c test for diagnosis of diabetes. Although it has been recommended for the diagnosis of diabetes, its precise test performance among Mexican Americans is uncertain. A strong “gold standard” would rely on repeated blood glucose measurement on different days, which is the recommended method for diagnosing diabetes in clinical practice. Our objective was to assess test performance of HbA1c in detecting diabetes and pre-diabetes against repeated fasting blood glucose measurement for the Mexican American population living in United States-Mexico border. Moreover, we wanted to find out a specific and precise threshold value of HbA1c for Diabetes Mellitus (DM) and pre-diabetes for this high-risk population which might assist in better diagnosis and better management of patient diabetes. ^ Research design and methods. We used CCHC dataset for our study. In 2004, the Cameron County Hispanic Cohort (CCHC), now numbering 2,574, was established drawn from randomly selected households on the basis of 2000 Census tract data. The CCHC study randomly selected a subset of people (aged 18-64 years) in CCHC cohort households to determine the influence of SES on diabetes and obesity. Among the participants in Cohort-2000, 67.15% are female; all are Hispanic. ^ Individuals were defined as having diabetes mellitus (Fasting plasma glucose [FPG] ≥ 126 mg/dL or pre-diabetes (100 ≤ FPG < 126 mg/dL). HbA1c test performance was evaluated using receiver operator characteristic (ROC) curves. Moreover, change-point models were used to determine HbA1c thresholds compatible with FPG thresholds for diabetes and pre-diabetes. ^ Results. When assessing Fasting Plasma Glucose (FPG) is used to detect diabetes, the sensitivity and specificity of HbA1c≥ 6.5% was 75% and 87% respectively (area under the curve 0.895). Additionally, when assessing FPG to detect pre-diabetes, the sensitivity and specificity of HbA1c≥ 6.0% (ADA recommended threshold) was 18% and 90% respectively. The sensitivity and specificity of HbA1c≥ 5.7% (International Expert Committee recommended threshold) for detecting pre-diabetes was 31% and 78% respectively. ROC analyses suggest HbA1c as a sound predictor of diabetes mellitus (area under the curve 0.895) but a poorer predictor for pre-diabetes (area under the curve 0.632). ^ Conclusions. Our data support the current recommendations for use of HbA1c in the diagnosis of diabetes for the Mexican American population as it has shown reasonable sensitivity, specificity and accuracy against repeated FPG measures. However, use of HbA1c may be premature for detecting pre-diabetes in this specific population because of the poor sensitivity with FPG. It might be the case that HbA1c is differentiating the cases more effectively who are at risk of developing diabetes. Following these pre-diabetic individuals for a longer-term for the detection of incident diabetes may lead to more confirmatory result.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

My dissertation focuses on developing methods for gene-gene/environment interactions and imprinting effect detections for human complex diseases and quantitative traits. It includes three sections: (1) generalizing the Natural and Orthogonal interaction (NOIA) model for the coding technique originally developed for gene-gene (GxG) interaction and also to reduced models; (2) developing a novel statistical approach that allows for modeling gene-environment (GxE) interactions influencing disease risk, and (3) developing a statistical approach for modeling genetic variants displaying parent-of-origin effects (POEs), such as imprinting. In the past decade, genetic researchers have identified a large number of causal variants for human genetic diseases and traits by single-locus analysis, and interaction has now become a hot topic in the effort to search for the complex network between multiple genes or environmental exposures contributing to the outcome. Epistasis, also known as gene-gene interaction is the departure from additive genetic effects from several genes to a trait, which means that the same alleles of one gene could display different genetic effects under different genetic backgrounds. In this study, we propose to implement the NOIA model for association studies along with interaction for human complex traits and diseases. We compare the performance of the new statistical models we developed and the usual functional model by both simulation study and real data analysis. Both simulation and real data analysis revealed higher power of the NOIA GxG interaction model for detecting both main genetic effects and interaction effects. Through application on a melanoma dataset, we confirmed the previously identified significant regions for melanoma risk at 15q13.1, 16q24.3 and 9p21.3. We also identified potential interactions with these significant regions that contribute to melanoma risk. Based on the NOIA model, we developed a novel statistical approach that allows us to model effects from a genetic factor and binary environmental exposure that are jointly influencing disease risk. Both simulation and real data analyses revealed higher power of the NOIA model for detecting both main genetic effects and interaction effects for both quantitative and binary traits. We also found that estimates of the parameters from logistic regression for binary traits are no longer statistically uncorrelated under the alternative model when there is an association. Applying our novel approach to a lung cancer dataset, we confirmed four SNPs in 5p15 and 15q25 region to be significantly associated with lung cancer risk in Caucasians population: rs2736100, rs402710, rs16969968 and rs8034191. We also validated that rs16969968 and rs8034191 in 15q25 region are significantly interacting with smoking in Caucasian population. Our approach identified the potential interactions of SNP rs2256543 in 6p21 with smoking on contributing to lung cancer risk. Genetic imprinting is the most well-known cause for parent-of-origin effect (POE) whereby a gene is differentially expressed depending on the parental origin of the same alleles. Genetic imprinting affects several human disorders, including diabetes, breast cancer, alcoholism, and obesity. This phenomenon has been shown to be important for normal embryonic development in mammals. Traditional association approaches ignore this important genetic phenomenon. In this study, we propose a NOIA framework for a single locus association study that estimates both main allelic effects and POEs. We develop statistical (Stat-POE) and functional (Func-POE) models, and demonstrate conditions for orthogonality of the Stat-POE model. We conducted simulations for both quantitative and qualitative traits to evaluate the performance of the statistical and functional models with different levels of POEs. Our results showed that the newly proposed Stat-POE model, which ensures orthogonality of variance components if Hardy-Weinberg Equilibrium (HWE) or equal minor and major allele frequencies is satisfied, had greater power for detecting the main allelic additive effect than a Func-POE model, which codes according to allelic substitutions, for both quantitative and qualitative traits. The power for detecting the POE was the same for the Stat-POE and Func-POE models under HWE for quantitative traits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prevalent sampling is an efficient and focused approach to the study of the natural history of disease. Right-censored time-to-event data observed from prospective prevalent cohort studies are often subject to left-truncated sampling. Left-truncated samples are not randomly selected from the population of interest and have a selection bias. Extensive studies have focused on estimating the unbiased distribution given left-truncated samples. However, in many applications, the exact date of disease onset was not observed. For example, in an HIV infection study, the exact HIV infection time is not observable. However, it is known that the HIV infection date occurred between two observable dates. Meeting these challenges motivated our study. We propose parametric models to estimate the unbiased distribution of left-truncated, right-censored time-to-event data with uncertain onset times. We first consider data from a length-biased sampling, a specific case in left-truncated samplings. Then we extend the proposed method to general left-truncated sampling. With a parametric model, we construct the full likelihood, given a biased sample with unobservable onset of disease. The parameters are estimated through the maximization of the constructed likelihood by adjusting the selection bias and unobservable exact onset. Simulations are conducted to evaluate the finite sample performance of the proposed methods. We apply the proposed method to an HIV infection study, estimating the unbiased survival function and covariance coefficients. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of the Hosmer-Lemeshow global goodness-of-fit statistic for logistic regression models was explored in a wide variety of conditions not previously fully investigated. Computer simulations, each consisting of 500 regression models, were run to assess the statistic in 23 different situations. The items which varied among the situations included the number of observations used in each regression, the number of covariates, the degree of dependence among the covariates, the combinations of continuous and discrete variables, and the generation of the values of the dependent variable for model fit or lack of fit.^ The study found that the $\rm\ C$g* statistic was adequate in tests of significance for most situations. However, when testing data which deviate from a logistic model, the statistic has low power to detect such deviation. Although grouping of the estimated probabilities into quantiles from 8 to 30 was studied, the deciles of risk approach was generally sufficient. Subdividing the estimated probabilities into more than 10 quantiles when there are many covariates in the model is not necessary, despite theoretical reasons which suggest otherwise. Because it does not follow a X$\sp2$ distribution, the statistic is not recommended for use in models containing only categorical variables with a limited number of covariate patterns.^ The statistic performed adequately when there were at least 10 observations per quantile. Large numbers of observations per quantile did not lead to incorrect conclusions that the model did not fit the data when it actually did. However, the statistic failed to detect lack of fit when it existed and should be supplemented with further tests for the influence of individual observations. Careful examination of the parameter estimates is also essential since the statistic did not perform as desired when there was moderate to severe collinearity among covariates.^ Two methods studied for handling tied values of the estimated probabilities made only a slight difference in conclusions about model fit. Neither method split observations with identical probabilities into different quantiles. Approaches which create equal size groups by separating ties should be avoided. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The climatic conditions of mountain habitats are greatly influenced by topography. Large differences in microclimate occur with small changes in elevation, and this complex interaction is an important determinant of mountain plant distributions. In spite of this, elevation is not often considered as a relevant predictor in species distribution models (SDMs) for mountain plants. Here, we evaluated the importance of including elevation as a predictor in SDMs for mountain plant species. We generated two sets of SDMs for each of 73 plant species that occur in the Pacific Northwest of North America; one set of models included elevation as a predictor variable and the other set did not. AUC scores indicated that omitting elevation as a predictor resulted in a negligible reduction of model performance. However, further analysis revealed that the omission of elevation resulted in large over-predictions of species' niche breadths-this effect was most pronounced for species that occupy the highest elevations. In addition, the inclusion of elevation as a predictor constrained the effects of other predictors that superficially affected the outcome of the models generated without elevation. Our results demonstrate that the inclusion of elevation as a predictor variable improves the quality of SDMs for high-elevation plant species. Because of the negligible AUC score penalty for over-predicting niche breadth, our results support the notion that AUC scores alone should not be used as a measure of model quality. More generally, our results illustrate the importance of selecting biologically relevant predictor variables when constructing SDMs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we examine the voting behavior in Indonesian parliamentary elections from 1999 to 2014. After summarizing the changes in Indonesian parties' share of the vote from a historical standpoint, we investigate the voting behavior with simple regression models to analyze the effect of regional characteristics on Islamic/secular parties' vote share, using aggregated panel data at the district level. Then, we also test the hypothesis of retrospective economic voting. The results show that districts which formerly stood strongly behind Islamic parties continued to select those parties, or gave preference to abstention over the parties in some elections. From the point of view of retrospective economic voting, we found that districts which experienced higher per capita economic growth gave more support to the ruling parties, although our results remain tentative because information on 2014 is not yet available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents an empirical analysis about corporate governance of financial institutions in United Arab Emirates (UAE). The purpose of this research is to analyze the influence of the structure of board of directors on the performance of these institutions. To examine the effect of control exerted by particular families on bank management, we estimated models where the dependent variable is return on assets (ROA) and return on equity (ROE), independent variables are board of directors variables, and control variables are bank management variables. Our results show that the control of corporate governance by a ruler's family within a board of directors has a positive effect on bank profitability. Our results indicate that control by a ruler's family through a bank's board of directors compensates for the inadequacy of UAE's corporate governance system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Independent Components Analysis is a Blind Source Separation method that aims to find the pure source signals mixed together in unknown proportions in the observed signals under study. It does this by searching for factors which are mutually statistically independent. It can thus be classified among the latent-variable based methods. Like other methods based on latent variables, a careful investigation has to be carried out to find out which factors are significant and which are not. Therefore, it is important to dispose of a validation procedure to decide on the optimal number of independent components to include in the final model. This can be made complicated by the fact that two consecutive models may differ in the order and signs of similarly-indexed ICs. As well, the structure of the extracted sources can change as a function of the number of factors calculated. Two methods for determining the optimal number of ICs are proposed in this article and applied to simulated and real datasets to demonstrate their performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The airline industry is often unstable and unpredictable forcing airlines to restructure and create flexible strategies that can respond to external operating environmental changes. In turbulent and competitive environments, firms with higher flexibility perform better and the value of these flexibilities depends on factors of uncertainty in the competitive environment. A model is sought for and arrived at, that shows how an airline business model will function in an uncertain environment with the least reduction in business performance over time. An analysis of the business model flexibility of 17 Airlines from Asia, Europe and Oceania, that is done with core competence as the indicator reveals a picture of inconsistencies in the core competence strategy of certain airlines and the corresponding reduction in business performance. The performance variations are explained from a service oriented core competence strategy employed by airlines that ultimately enables them in having a flexible business model that not only increases business performance but also helps in reducing the uncertainties in the internal and external operating environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we propose a method to accelerate time dependent numerical solvers of systems of PDEs that require a high cost in computational time and memory. The method is based on the combined use of such numerical solver with a proper orthogonal decomposition, from which we identify modes, a Galerkin projection (that provides a reduced system of equations) and the integration of the reduced system, studying the evolution of the modal amplitudes. We integrate the reduced model until our a priori error estimator indicates that our approximation in not accurate. At this point we use again our original numerical code in a short time interval to adapt the POD manifold and continue then with the integration of the reduced model. Application will be made to two model problems: the Ginzburg-Landau equation in transient chaos conditions and the two-dimensional pulsating cavity problem, which describes the motion of liquid in a box whose upper wall is moving back and forth in a quasi-periodic fashion. Finally, we will discuss a way of improving the performance of the method using experimental data or information from numerical simulations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the presence of a river flood, operators in charge of control must take decisions based on imperfect and incomplete sources of information (e.g., data provided by a limited number sensors) and partial knowledge about the structure and behavior of the river basin. This is a case of reasoning about a complex dynamic system with uncertainty and real-time constraints where bayesian networks can be used to provide an effective support. In this paper we describe a solution with spatio-temporal bayesian networks to be used in a context of emergencies produced by river floods. In the paper we describe first a set of types of causal relations for hydrologic processes with spatial and temporal references to represent the dynamics of the river basin. Then we describe how this was included in a computer system called SAIDA to provide assistance to operators in charge of control in a river basin. Finally the paper shows experimental results about the performance of the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on our needs, that is to say, through precise simulation of the impact phenomena that may occur inside a jet engine turbine with an explicit non-linear finite element code, four new material models are postulated. Each one of is calibrated for four high-performance alloys that can be encountered in a modern jet engine. A new uncoupled material model for high strain and ballistic is proposed. Based on a Johnson-Cook type model, the proposed formulation introduces the effect of the third deviatoric invariant by means of three different Lode angle dependent functions. The Lode dependent functions are added to both plasticity and failure models. The postulated model is calibrated for a 6061-T651 aluminium alloy with data taken from the literature. The fracture pattern predictability of the JCX material model is shown performing numerical simulations of various quasi-static and dynamic tests. As an extension of the above-mentioned model, a modification in the thermal softening behaviour due to phase transformation temperatures is developed (JCXt). Additionally, a Lode angle dependent flow stress is defined. Analysing the phase diagram and high temperature tests performed, phase transformation temperatures of the FV535 stainless steel are determined. The postulated material model constants for the FV535 stainless steel are calibrated. A coupled elastoplastic-damage material model for high strain and ballistic applications is presented (JCXd). A Lode angle dependent function is added to the equivalent plastic strain to failure definition of the Johnson-Cook failure criterion. The weakening in the elastic law and in the Johnson-Cook type constitutive relation implicitly introduces the Lode angle dependency in the elastoplastic behaviour. The material model is calibrated for precipitation hardened Inconel 718 nickel-base superalloy. The combination of a Lode angle dependent failure criterion with weakened constitutive equations is proven to predict fracture patterns of the mechanical tests performed and provide reliable results. A transversely isotropic material model for directionally solidified alloys is presented. The proposed yield function is based a single linear transformation of the stress tensor. The linear operator weighs the degree of anisotropy of the yield function. The elastic behaviour, as well as the hardening, are considered isotropic. To model the hardening, a Johnson-Cook type relation is adopted. A material vector is included in the model implementation. The failure is modelled with the Cockroft-Latham failure criterion. The material vector allows orienting the reference orientation in any other that the user may need. The model is calibrated for the MAR-M 247 directionally solidified nickel-base superalloy.