901 resultados para Mitigation of environmental impacts
Resumo:
Numerous environmental chemicals, both long-known toxicants such as persistent organic pollutants as well as emerging contaminants such as pharmaceuticals, are known to modulate immune parameters of wildlife species, what can have adverse consequences for the fitness of individuals including their capability to resist pathogen infections. Despite frequent field observations of impaired immunocompetence and increased disease incidence in contaminant-exposed wildlife populations, the potential relevance of immunotoxic effects for the ecological impact of chemicals is rarely considered in ecotoxicological risk assessment. A limiting factor in the assessment of immunotoxic effects might be the complexity of the immune system what makes it difficult (1) to select appropriate exposure and effect parameters out of the many immune parameters which could be measured, and (2) to evaluate the significance of the selected parameters for the overall fitness and immunocompetence of the organism. Here, we present - on the example of teleost fishes - a brief discussion of how to assess chemical impact on the immune system using parameters at different levels of complexity and integration: immune mediators, humoral immune effectors, cellular immune defenses, macroscopical and microscopical responses of lymphoid tissues and organs, and host resistance to pathogens. Importantly, adverse effects of chemicals on immunocompetence may be detectable only after immune system activation, e.g., after pathogen challenge, but not in the resting immune system of non-infected fish. Current limitations to further development and implementation of immunotoxicity assays and parameters in ecotoxicological risk assessment are not primarily due to technological constraints, but are related from insufficient knowledge of (1) possible modes of action in the immune system, (2) the importance of intra- and inter-species immune system variability for the response against chemical stressors, and (3) deficits in conceptual and mechanistic assessment of combination effects of chemicals and pathogens.
Resumo:
PRINCIPLES To evaluate the validity and feasibility of a novel photography-based home assessment (PhoHA) protocol, as a possible substitute for on-site home assessment (OsHA). METHODS A total of 20 patients aged ≥65 years who were hospitalised in a rehabilitation centre for musculoskeletal disorders affecting mobility participated in this prospective validation study. For PhoHA, occupational therapists rated photographs and measurements of patients' homes provided by patients' confidants. For OsHA, occupational therapists conducted a conventional home visit. RESULTS Information obtained by PhoHA was 79.1% complete (1,120 environmental factors identified by PhoHA vs 1416 by OsHA). Of the 1,120 factors, 749 had dichotomous (potential hazards) and 371 continuous scores (measurements with tape measure). Validity of PhoHA to potential hazards was good (sensitivity 78.9%, specificity 84.9%), except for two subdomains (pathways, slippery surfaces). Pearson's correlation coefficient for the validity of measurements was 0.87 (95% confidence interval [CI 0.80-0.92, p <0.001). Agreement between methods was 0.52 (95%CI 0.34-0.67, p <0.001, Cohen's kappa coefficient) for dichotomous and 0.86 (95%CI 0.79-0.91, p <0.001, intraclass correlation coefficient) for continuous scores. Costs of PhoHA were 53.0% lower than those of OsHA (p <0.001). CONCLUSIONS PhoHA has good concurrent validity for environmental assessment if instructions for confidants are improved. PhoHA is potentially a cost-effective method for environmental assessment.
Resumo:
Diseases are believed to arise from dysregulation of biological systems (pathways) perturbed by environmental triggers. Biological systems as a whole are not just the sum of their components, rather ever-changing, complex and dynamic systems over time in response to internal and external perturbation. In the past, biologists have mainly focused on studying either functions of isolated genes or steady-states of small biological pathways. However, it is systems dynamics that play an essential role in giving rise to cellular function/dysfunction which cause diseases, such as growth, differentiation, division and apoptosis. Biological phenomena of the entire organism are not only determined by steady-state characteristics of the biological systems, but also by intrinsic dynamic properties of biological systems, including stability, transient-response, and controllability, which determine how the systems maintain their functions and performance under a broad range of random internal and external perturbations. As a proof of principle, we examine signal transduction pathways and genetic regulatory pathways as biological systems. We employ widely used state-space equations in systems science to model biological systems, and use expectation-maximization (EM) algorithms and Kalman filter to estimate the parameters in the models. We apply the developed state-space models to human fibroblasts obtained from the autoimmune fibrosing disease, scleroderma, and then perform dynamic analysis of partial TGF-beta pathway in both normal and scleroderma fibroblasts stimulated by silica. We find that TGF-beta pathway under perturbation of silica shows significant differences in dynamic properties between normal and scleroderma fibroblasts. Our findings may open a new avenue in exploring the functions of cells and mechanism operative in disease development.
Resumo:
Diseases are believed to arise from dysregulation of biological systems (pathways) perturbed by environmental triggers. Biological systems as a whole are not just the sum of their components, rather ever-changing, complex and dynamic systems over time in response to internal and external perturbation. In the past, biologists have mainly focused on studying either functions of isolated genes or steady-states of small biological pathways. However, it is systems dynamics that play an essential role in giving rise to cellular function/dysfunction which cause diseases, such as growth, differentiation, division and apoptosis. Biological phenomena of the entire organism are not only determined by steady-state characteristics of the biological systems, but also by intrinsic dynamic properties of biological systems, including stability, transient-response, and controllability, which determine how the systems maintain their functions and performance under a broad range of random internal and external perturbations. As a proof of principle, we examine signal transduction pathways and genetic regulatory pathways as biological systems. We employ widely used state-space equations in systems science to model biological systems, and use expectation-maximization (EM) algorithms and Kalman filter to estimate the parameters in the models. We apply the developed state-space models to human fibroblasts obtained from the autoimmune fibrosing disease, scleroderma, and then perform dynamic analysis of partial TGF-beta pathway in both normal and scleroderma fibroblasts stimulated by silica. We find that TGF-beta pathway under perturbation of silica shows significant differences in dynamic properties between normal and scleroderma fibroblasts. Our findings may open a new avenue in exploring the functions of cells and mechanism operative in disease development.
Resumo:
This paper presents a summary of beam-induced backgrounds observed in the ATLAS detector and discusses methods to tag and remove background contaminated events in data. Trigger-rate based monitoring of beam-related backgrounds is presented. The correlations of backgrounds with machine conditions, such as residual pressure in the beam-pipe, are discussed. Results from dedicated beam-background simulations are shown, and their qualitative agreement with data is evaluated. Data taken during the passage of unpaired, i.e. non-colliding, proton bunches is used to obtain background-enriched data samples. These are used to identify characteristic features of beam-induced backgrounds, which then are exploited to develop dedicated background tagging tools. These tools, based on observables in the Pixel detector, the muon spectrometer and the calorimeters, are described in detail and their efficiencies are evaluated. Finally an example of an application of these techniques to a monojet analysis is given, which demonstrates the importance of such event cleaning techniques for some new physics searches.
Resumo:
An estimated 6051 tons of active substances went into the production of veterinary pharmaceuticals (VPs) for the treatment of food animals in the European Union (EU) in 2004, including 5393 tons of antibiotics and 194 tons of antiparasitics (1). With global meat production projected to increase (2) and the growing market for companion animal pharmaceuticals (3), the use of VPs will continue to increase. Although VPs may benefit the health and welfare of domestic animals and the efficiency of food animal production, they can contaminate the environment through manufacturing, treatment of animals, and disposal of carcasses, offal, urine, feces, and unused products (4) (see the chart). This contamination is a threat to nontarget species, including humans. With Spain having recently authorized marketing of a VP that was banned in South Asia in the past decade in light of environmental impacts, we recommend strengthening of current procedures and addition of a more proactive, holistic, One Health approach applicable to all VPs.
Resumo:
Introduction. – Attitude toward nature and attitude toward environmental protection are two separate but correlated attitudes. Little is known about the two attitudes’ stability/volatility over time, despite the practical value of such knowledge. Objectives & method. – Using longitudinal survey data from 251 adults in a cross-lagged structural equation model, we assessed the degree of spontaneous (i.e., unprompted) change in the two attitudes. We also considered whether such change could provide evidence regarding causal direction; causation could go in either of two directions between the two attitudes, or it could even be bi-directional. Results. – We corroborated the substantive connection between attitude toward nature and attitude toward environmental protection; however, the absence of change in the attitudes despite the passage of two years disallows reliable statements about causal direction. Conclusion. – It is possible to protect the environment by encouraging appreciation of nature, but change in attitude toward nature and attitude toward environmental protection may be difficult to achieve with mature individuals.
Resumo:
It has been widely accepted for some time that species-appropriate environmental enrichment is important for the welfare of research animals, but its impact on research data initially received little attention. This has now changed, as the use of enrichment as one element of routine husbandry has expanded. In addition to its use in the care of larger research animals, such as nonhuman primates, it is now being used to improve the environments of small research animals, such as rodents, which are used in significantly greater numbers and in a wide variety of studies. Concern has been expressed that enrichment negatively affects both experimental validity and reproducibility. However, when a concise definition of enrichment is used, with a sound understanding of the biology and behaviour of the animal as well as the research constraints, it becomes clear that the welfare of research animals can be enhanced through environmental enrichment without compromising their purpose. Indeed, it is shown that the converse is true: the provision of suitable enrichment enhances the well-being of the animal, thereby refining the animal model and improving the research data. Thus, the argument is made that both the validity and reproducibility of the research are enhanced when proper consideration is given to the research animal's living environment and the animal's opportunities to express species-typical behaviours.
Resumo:
When kept in barren and restrictive cages, animals frequently develop stereotypic behaviour patterns that are characterized by high repetition rates, conspicuous invariance and an apparent lack of function. Although millions of animals are affected, the underlying causes and mechanisms are still unclear. Growing evidence suggests that cage-induced stereotypies may reflect pathological dysfunction within basal ganglia circuitry expressed by perseverative behaviour. In order to assess whether variation in stereotypy performance and variation in perseverative behaviour may have a common cause in ICR CD-1 mice, we assessed the effects of environmental enrichment on both phenomena. We raised 48 female ICR CD-1 mice in standard or enriched cages from three weeks to either 6 or 11 months of age and measured stereotypy level in the home cage and perseveration on an extinction task. We further examined whether enriched rearing conditions (early enrichment) protect mice from the developing stereotypies later in life and whether stereotypies developed in barren cages would persist in an enriched environment (late enrichment) by transferring standard mice to enriched cages and vice versa for 14 weeks after completion of the extinction task. We found no evidence for a causal relation between stereotypy and perseveration in mice. However, transfer to enriched cages reduced stereotypy levels significantly both at 6 and 11 months of age indicating that stereotypies had not become established yet. Finally, we found that removing enrichments at both ages did not induce higher stereotypy levels, thereby confirming earlier reports of a neuroprotective effect of early enrichment.
Resumo:
A study was conducted on the highlands of Ethiopia to identify and analyse the factors determining the adoption of environmental management measures. In 1985, Ethiopia was classified into low –and high-potential areas based on the suitability of the natural environment for rain-fed agriculture. To address these objectives, case study areas were selected from low-potential and high-potential areas randomly. Data were collected through face-to-face interview and key informants, focus group discussion and field observation. In the low-potential areas, the physical environment ‒ particularly soil and forest environments have shown substantial recovery. Similarly, the water environment has improved. However, in the high-potential areas sampled, these resources are still being degraded. Clear understanding of the benefits of soil conservation structures by farmers, active involvement and technical support from the government and full and genuine participation of farmers in communal environmental resources management activities were found to be main factors in the adoption of environmental management measures.