868 resultados para Mitigation measures
Resumo:
Many molecular ecological and evolutionary studies sample wild populations at a single point in time, failing to consider that data they collect represents genetic variation from a potentially unrepresentative snapshot in time. Variation across time in genetic parameters may occur quickly in species that produce multiple generations of offspring per year. However, many studies of rapid contemporary microevolution examine phenotypic trait divergence as opposed to molecular evolutionary divergence. Here, we compare genetic diversity in wild caught populations of Drosophila persimilis and D. pseudoobscura collected 16 years apart at the same time of year and same site at four X-linked and two mitochondrial loci to assess genetic stability. We found no major changes in nucleotide diversity in either species, but we observed a drastic shift in Tajima’s D between D. pseudoobscura timepoints at one locus associated with the increased abundance of a set of related haplotypes. Our data also suggests that D. persimilis may have recently accelerated its demographic expansion. While the changes we observed were modest, this study reinforces the importance of considering potential temporal variation in genetic parameters within single populations over short evolutionary timescales.
Resumo:
We examined the coherence of trauma memories in a trauma-exposed community sample of 30 adults with and 30 without posttraumatic stress disorder. The groups had similar categories of traumas and were matched on multiple factors that could affect the coherence of memories. We compared the transcribed oral trauma memories of participants with their most important and most positive memories. A comprehensive set of 28 measures of coherence including 3 ratings by the participants, 7 ratings by outside raters, and 18 computer-scored measures, provided a variety of approaches to defining and measuring coherence. A multivariate analysis of variance indicated differences in coherence among the trauma, important, and positive memories, but not between the diagnostic groups or their interaction with these memory types. Most differences were small in magnitude; in some cases, the trauma memories were more, rather than less, coherent than the control memories. Where differences existed, the results agreed with the existing literature, suggesting that factors other than the incoherence of trauma memories are most likely to be central to the maintenance of posttraumatic stress disorder and thus its treatment.
Resumo:
Using data from a longitudinal study of community-dwelling older adults, we analyzed the most extensive set of known correlates of PTSD symptoms obtained from a single sample to examine the measures' independent and combined utility in accounting for PTSD symptom severity. Fifteen measures identified as PTSD risk factors in published meta-analyses and 12 theoretically and empirically supported individual difference and health-related measures were included. Individual difference measures assessed after the trauma, including insecure attachment and factors related to the current trauma memory, such as self-rated severity, event centrality, frequency of involuntary recall, and physical reactions to the memory, accounted for symptom severity better than measures of pre-trauma factors. In an analysis restricted to prospective measures assessed before the trauma, the total variance explained decreased from 56% to 16%. Results support a model of PTSD in which characteristics of the current trauma memory promote the development and maintenance of PTSD symptoms.
Resumo:
The increasing complexity of new manufacturing processes and the continuously growing range of fabrication options mean that critical decisions about the insertion of new technologies must be made as early as possible in the design process. Mitigating the technology risks under limited knowledge is a key factor and major requirement to secure a successful development of the new technologies. In order to address this challenge, a risk mitigation methodology that incorporates both qualitative and quantitative analysis is required. This paper outlines the methodology being developed under a major UK grand challenge project - 3D-Mintegration. The main focus is on identifying the risks through identification of the product key characteristics using a product breakdown approach. The assessment of the identified risks uses quantification and prioritisation techniques to evaluate and rank the risks. Traditional statistical process control based on process capability and six sigma concepts are applied to measure the process capability as a result of the risks that have been identified. This paper also details a numerical approach that can be used to undertake risk analysis. This methodology is based on computational framework where modelling and statistical techniques are integrated. Also, an example of modeling and simulation technique is given using focused ion beam which is among the investigated in the project manufacturing processes.
Resumo:
This paper presents a design methodology based on numerical modelling, integrated with optimisation techniques and statistical methods, to aid the development of new advanced technologies in the area of micro and nano systems. The design methodology is demonstrated for a micro-machining process called Focused Ion Beam (FIB). This process has been modelled to provide knowledge of how a pre-defined geometry can be achieved through this direct milling. The geometry characterisation is obtained using a Reduced Order Models (ROM), generated from the results of a mathematical model of the Focused Ion Beam, and Design of Experiment (DoE) methods. In this work, the focus is on the design flow methodology which includes an approach on how to include process parameter uncertainties into the process optimisation modelling framework. A discussion on the impact of the process parameters, and their variations, on the quality and performance of the fabricated structure is also presented. The design task is to identify the optimal process conditions, by altering the process parameters, so that certain reliability and confidence of the application is achieved and the imposed constraints are satisfied. The software tools used and developed to demonstrate the design methodology are also presented.
Resumo:
1.Commercial fishing is an important socio-economic activity in coastal regions of the UK and Ireland. Ocean–atmospheric changes caused by greenhouse gas emissions are likely to affect future fish and shellfish production, and lead to increasing challenges in ensuring long-term sustainable fisheries management. 2.The paper reviews existing knowledge and understanding of the exposure of marine ecosystems to ocean-atmospheric changes, the consequences of these changes for marine fisheries in the UK and Ireland, and the adaptability of the UK and Irish fisheries sector. 3.Ocean warming is resulting in shifts in the distribution of exploited species and is affecting the productivity of fish stocks and underlying marine ecosystems. In addition, some studies suggest that ocean acidification may have large potential impacts on fisheries resources, in particular shell-forming invertebrates. 4.These changes may lead to loss of productivity, but also the opening of new fishing opportunities, depending on the interactions between climate impacts, fishing grounds and fleet types. They will also affect fishing regulations, the price of fish products and operating costs, which in turn will affect the economic performance of the UK and Irish fleets. 5.Key knowledge gaps exist in our understanding of the implications of climate and ocean chemistry changes for marine fisheries in the UK and Ireland, particularly on the social and economic responses of the fishing sectors to climate change. However, these gaps should not delay climate change mitigation and adaptation policy actions, particularly those measures that clearly have other ‘co-benefits’.