998 resultados para Minimum processing
Resumo:
P-glycoprotein (Pgp), a protein codified by Multi Drug Resistance (MDR1) gene, has a detoxifying function and might influence the toxicity and pharmacokinetics and pharmacodynamics of drugs. Sampling strategies to improve Pgp studies could be useful to optimize the sensitivity and the reproducibility of efflux assays. This study aimed to compare Pgp expression and efflux activity by measuring Rhodamine123 (Rh123) retention in lymphocytes stored under different conditions, in order to evaluate the potential utility of any of the storing conditions in Pgp functionality. Our results show no change in protein expression of Pgp by confocal studies and Western blotting, nor changes at the mRNA level (qRT-PCR). No differences in Rh123 efflux by Pgp activity assays were found between fresh and frozen lymphocytes after 24 hours of blood extraction, using either of the two Pgp specific inhibitors (VP and PSC833). Different working conditions in the 24 hours post blood extraction do not affect Rh123 efflux. These results allow standardization of Pgp activity measurement in different individuals with different timing of blood sampling and in different geographic areas. _______________
Resumo:
Forensic intelligence has recently gathered increasing attention as a potential expansion of forensic science that may contribute in a wider policing and security context. Whilst the new avenue is certainly promising, relatively few attempts to incorporate models, methods and techniques into practical projects are reported. This work reports a practical application of a generalised and transversal framework for developing forensic intelligence processes referred to here as the Transversal model adapted from previous work. Visual features present in the images of four datasets of false identity documents were systematically profiled and compared using image processing for the detection of a series of modus operandi (M.O.) actions. The nature of these series and their relation to the notion of common source was evaluated with respect to alternative known information and inferences drawn regarding respective crime systems. 439 documents seized by police and border guard authorities across 10 jurisdictions in Switzerland with known and unknown source level links formed the datasets for this study. Training sets were developed based on both known source level data, and visually supported relationships. Performance was evaluated through the use of intra-variability and inter-variability scores drawn from over 48,000 comparisons. The optimised method exhibited significant sensitivity combined with strong specificity and demonstrates its ability to support forensic intelligence efforts.
Resumo:
Peer-reviewed
Resumo:
Many aspects of human behavior are driven by rewards, yet different people are differentially sensitive to rewards and punishment. In this study, we showthat white matter microstructure inthe uncinate/inferiorfronto-occipitalfasciculus, defined byfractional anisotropy values derived from diffusion tensor magnetic resonance images, correlates with both short-term (indexed by the fMRI blood oxygenation level-dependent response to reward in the nucleus accumbens) and long-term (indexed by the trait measure sensitivity to punishment) reactivityto rewards.Moreover,traitmeasures of reward processingwere also correlatedwith reward-relatedfunctional activation in the nucleus accumbens. The white matter tract revealed by the correlational analysis connects the anterior temporal lobe with the medial and lateral orbitofrontal cortex and also supplies the ventral striatum. The pattern of strong correlations suggests an intimate relationship betweenwhitematter structure and reward-related behaviorthatmay also play a rolein a number of pathological conditions, such as addiction and pathological gambling.
Resumo:
This thesis deals with distance transforms which are a fundamental issue in image processing and computer vision. In this thesis, two new distance transforms for gray level images are presented. As a new application for distance transforms, they are applied to gray level image compression. The new distance transforms are both new extensions of the well known distance transform algorithm developed by Rosenfeld, Pfaltz and Lay. With some modification their algorithm which calculates a distance transform on binary images with a chosen kernel has been made to calculate a chessboard like distance transform with integer numbers (DTOCS) and a real value distance transform (EDTOCS) on gray level images. Both distance transforms, the DTOCS and EDTOCS, require only two passes over the graylevel image and are extremely simple to implement. Only two image buffers are needed: The original gray level image and the binary image which defines the region(s) of calculation. No other image buffers are needed even if more than one iteration round is performed. For large neighborhoods and complicated images the two pass distance algorithm has to be applied to the image more than once, typically 3 10 times. Different types of kernels can be adopted. It is important to notice that no other existing transform calculates the same kind of distance map as the DTOCS. All the other gray weighted distance function, GRAYMAT etc. algorithms find the minimum path joining two points by the smallest sum of gray levels or weighting the distance values directly by the gray levels in some manner. The DTOCS does not weight them that way. The DTOCS gives a weighted version of the chessboard distance map. The weights are not constant, but gray value differences of the original image. The difference between the DTOCS map and other distance transforms for gray level images is shown. The difference between the DTOCS and EDTOCS is that the EDTOCS calculates these gray level differences in a different way. It propagates local Euclidean distances inside a kernel. Analytical derivations of some results concerning the DTOCS and the EDTOCS are presented. Commonly distance transforms are used for feature extraction in pattern recognition and learning. Their use in image compression is very rare. This thesis introduces a new application area for distance transforms. Three new image compression algorithms based on the DTOCS and one based on the EDTOCS are presented. Control points, i.e. points that are considered fundamental for the reconstruction of the image, are selected from the gray level image using the DTOCS and the EDTOCS. The first group of methods select the maximas of the distance image to new control points and the second group of methods compare the DTOCS distance to binary image chessboard distance. The effect of applying threshold masks of different sizes along the threshold boundaries is studied. The time complexity of the compression algorithms is analyzed both analytically and experimentally. It is shown that the time complexity of the algorithms is independent of the number of control points, i.e. the compression ratio. Also a new morphological image decompression scheme is presented, the 8 kernels' method. Several decompressed images are presented. The best results are obtained using the Delaunay triangulation. The obtained image quality equals that of the DCT images with a 4 x 4
Resumo:
Neural signal processing is a discipline within neuroengineering. This interdisciplinary approach combines principles from machine learning, signal processing theory, and computational neuroscience applied to problems in basic and clinical neuroscience. The ultimate goal of neuroengineering is a technological revolution, where machines would interact in real time with the brain. Machines and brains could interface, enabling normal function in cases of injury or disease, brain monitoring, and/or medical rehabilitation of brain disorders. Much current research in neuroengineering is focused on understanding the coding and processing of information in the sensory and motor systems, quantifying how this processing is altered in the pathological state, and how it can be manipulated through interactions with artificial devices including brain–computer interfaces and neuroprosthetics.
Resumo:
Language switching is omnipresent in bilingual individuals. In fact, the ability to switch languages (code switching) is a very fast, efficient, and flexible process that seems to be a fundamental aspect of bilingual language processing. In this study, we aimed to characterize psychometrically self-perceived individual differences in language switching and to create a reliable measure of this behavioral pattern by introducing a bilingual switching questionnaire. As a working hypothesis based on the previous literature about code switching, we decomposed language switching into four constructs: (i) L1 switching tendencies (the tendency to switch to L1; L1-switch); (ii) L2 switching tendencies (L2-switch); (iii) contextual switch, which indexes the frequency of switches usually triggered by a particular situation, topic, or environment; and (iv) unintended switch, which measures the lack of intention and awareness of the language switches. A total of 582 SpanishCatalan bilingual university students were studied. Twelve items were selected (three for each construct). The correlation matrix was factor-analyzed using minimum rank factor analysis followed by oblique direct oblimin rotation. The overall proportion of common variance explained by the four extracted factors was 0.86. Finally, to assess the external validity of the individual differences scored with the new questionnaire, we evaluated the correlations between these measures and several psychometric (language proficiency) and behavioral measures related to cognitive and attentional control. The present study highlights the importance of evaluating individual differences in language switching using self-assessment instruments when studying the interface between cognitive control and bilingualism.
Resumo:
In the context of autonomous sensors powered by small-size photovoltaic (PV) panels, this work analyses how the efficiency of DC/DC-converter-based power processing circuits can be improved by an appropriate selection of the inductor current that transfers the energy from the PV panel to a storage unit. Each component of power losses (fixed, conduction and switching losses) involved in the DC/DC converter specifically depends on the average inductor current so that there is an optimal value of this current that causes minimal losses and, hence, maximum efficiency. Such an idea has been tested experimentally using two commercial DC/DC converters whose average inductor current is adjustable. Experimental results show that the efficiency can be improved up to 12% by selecting an optimal value of that current, which is around 300-350 mA for such DC/DC converters.
Resumo:
The heated debate over whether there is only a single mechanism or two mechanisms for morphology has diverted valuable research energy away from the more critical questions about the neural computations involved in the comprehension and production of morphologically complex forms. Cognitive neuroscience data implicate many brain areas. All extant models, whether they rely on a connectionist network or espouse two mechanisms, are too underspecified to explain why more than a few brain areas differ in their activity during the processing of regular and irregular forms. No one doubts that the brain treats regular and irregular words differently, but brain data indicate that a simplistic account will not do. It is time for us to search for the critical factors free from theoretical blinders.
Resumo:
Controversial results have been reported concerning the neural mechanisms involved in the processing of rewards and punishments. On the one hand, there is evidence suggesting that monetary gains and losses activate a similar fronto-subcortical network. On the other hand, results of recent studies imply that reward and punishment may engage distinct neural mechanisms. Using functional magnetic resonance imaging (fMRI) we investigated both regional and interregional functional connectivity patterns while participants performed a gambling task featuring unexpectedly high monetary gains and losses. Classical univariate statistical analysis showed that monetary gains and losses activated a similar fronto-striatallimbic network, in which main activation peaks were observed bilaterally in the ventral striatum. Functional connectivity analysis showed similar responses for gain and loss conditions in the insular cortex, the amygdala, and the hippocampus that correlated with the activity observed in the seed region ventral striatum, with the connectivity to the amygdala appearing more pronounced after losses. Larger functional connectivity was found to the medial orbitofrontal cortex for negative outcomes. The fact that different functional patterns were obtained with both analyses suggests that the brain activations observed in the classical univariate approach identifi es the involvement of different functional networks in the current task. These results stress the importance of studying functional connectivity in addition to standard fMRI analysis in reward-related studies.
Resumo:
The set of initial conditions for which the pseudoclassical evolution algorithm (and minimality conservation) is verified for Hamiltonians of degrees N (N>2) is explicitly determined through a class of restrictions for the corresponding classical trajectories, and it is proved to be at most denumerable. Thus these algorithms are verified if and only if the system is quadratic except for a set of measure zero. The possibility of time-dependent a-equivalence classes is studied and its physical interpretation is presented. The implied equivalence of the pseudoclassical and Ehrenfest algorithms and their relationship with minimality conservation is discussed in detail. Also, the explicit derivation of the general unitary operator which linearly transforms minimum-uncertainty states leads to the derivation, among others, of operators with a general geometrical interpretation in phase space, such as rotations (parity, Fourier).
Resumo:
Tot seguit presentem un entorn per analitzar senyals de tot tipus amb LDB (Local Discriminant Bases) i MLDB (Modified Local Discriminant Bases). Aquest entorn utilitza funcions desenvolupades en el marc d’una tesi en fase de desenvolupament. Per entendre part d’aquestes funcions es requereix un nivell de coneixement avançat de processament de senyals. S’han extret dels treballs realitzats per Naoki Saito [3], que s’han agafat com a punt de partida per la realització de l’algorisme de la tesi doctoral no finalitzada de Jose Antonio Soria. Aquesta interfície desenvolupada accepta la incorporació de nous paquets i funcions. Hem deixat un menú preparat per integrar Sinus IV packet transform i Cosine IV packet transform, tot i que també podem incorporar-n’hi altres. L’aplicació consta de dues interfícies, un Assistent i una interfície principal. També hem creat una finestra per importar i exportar les variables desitjades a diferents entorns. Per fer aquesta aplicació s’han programat tots els elements de les finestres, en lloc d’utilitzar el GUIDE (Graphical User Interface Development Enviroment) de MATLAB, per tal que sigui compatible entre les diferents versions d’aquest programa. En total hem fet 73 funcions en la interfície principal (d’aquestes, 10 pertanyen a la finestra d’importar i exportar) i 23 en la de l’Assistent. En aquest treball només explicarem 6 funcions i les 3 de creació d’aquestes interfícies per no fer-lo excessivament extens. Les funcions que explicarem són les més importants, ja sigui perquè s’utilitzen sovint, perquè, segons la complexitat McCabe, són les més complicades o perquè són necessàries pel processament del senyal. Passem cada entrada de dades per part de l’usuari per funcions que ens detectaran errors en aquesta entrada, com eliminació de zeros o de caràcters que no siguin números, com comprovar que són enters o que estan dins dels límits màxims i mínims que li pertoquen.
Resumo:
Isomaltulose, a functional isomer of sucrose, is a non-cariogenic reducing disaccharide; has a low glycemic index; selectively promotes growth of beneficial bifidobacteria in the human intestinal microflora; and has greater stability than sucrose in some foods and beverages. Isomaltulose is a nutritional sugar that is digested more slowly than sucrose, and has health advantages for diabetics and nondiabetics. Immobilization techniques, especially entrapment of the cells, are widely used for conversion of sucrose into isomaltulose. Immobilization offers advantages such as minimum downstream processing, continuous operation and reusability of cells. Isomaltulose is currently considered to be a promising sugar substitute.
Resumo:
The objectives of this research work “Identification of the Emerging Issues in Recycled Fiber processing” are discovering of emerging research issues and presenting of new approaches to identify promising research themes in recovered paper application and production. The projected approach consists of identifying technological problems often encountered in wastepaper preparation processes and also improving the quality of recovered paper and increasing its proportion in the composition of paper and board. The source of information for the problem retrieval is scientific publications in which waste paper application and production were discussed. The study has exploited several research methods to understand the changes related to utilization of recovered paper. The all assembled data was carefully studied and categorized by applying software called RefViz and CiteSpace. Suggestions were made on the various classes of these problems that need further investigation in order to propose an emerging research trends in recovered paper.