916 resultados para Minimal path convexity
Resumo:
The development of path-dependent processes basically refers to positive feedback in terms of increasing returns as the main driving forces of such processes. Furthermore, path dependence can be affected by context factors, such as different degrees of complexity. Up to now, it has been unclear whether and how different settings of complexity impact path-dependent processes and the probability of lock-in. In this paper we investigate the relationship between environmental complexity and path dependence by means of an experimental study. By focusing on the mode of information load and decision quality in chronological sequences, the study explores the impact of complexity on decision-making processes. The results contribute to both the development of path-dependence theory and a better understanding of decision-making behavior under conditions of positive feedback. Since previous path research has mostly applied qualitative case-study research and (to a minor part) simulations, this paper makes a further contribution by establishing an experimental approach for research on path dependence.
Resumo:
The procurement of transportation services via large-scale combinatorial auctions involves a couple of complex decisions whose outcome highly influences the performance of the tender process. This paper examines the shipper's task of selecting a subset of the submitted bids which efficiently trades off total procurement cost against expected carrier performance. To solve this bi-objective winner determination problem, we propose a Pareto-based greedy randomized adaptive search procedure (GRASP). As a post-optimizer we use a path relinking procedure which is hybridized with branch-and-bound. Several variants of this algorithm are evaluated by means of artificial test instances which comply with important real-world characteristics. The two best variants prove superior to a previously published Pareto-based evolutionary algorithm.
Resumo:
Although an increasing number of studies of technological, institutional and organizational change refer to the concepts of path dependence and path creation, few attempts have been made to consider these concepts explicitly in their methodological accounts. This paper addresses this gap and contributes to the literature by developing a comprehensive methodology that originates from the concepts of path dependence and path creation – path constitution analysis (PCA) – and allows for the integration of multi-actor constellations on multiple levels of analysis within a process perspective. Based upon a longitudinal case study in the field of semiconductors, we illustrate PCA ‘in action’ as a template for other researchers and critically examine its adequacy. We conclude with implications for further path-oriented inquiries.
Resumo:
Gene therapy, aimed at the correction of key pathologies being out of reach for conventional drugs, bears the potential to alter the treatment of cardiovascular diseases radically and thereby of heart failure. Heart failure gene therapy refers to a therapeutic system of targeted drug delivery to the heart that uses formulations of DNA and RNA, whose products determine the therapeutic classification through their biological actions. Among resident cardiac cells, cardiomyocytes have been the therapeutic target of numerous attempts to regenerate systolic and diastolic performance, to reverse remodeling and restore electric stability and metabolism. Although the concept to intervene directly within the genetic and molecular foundation of cardiac cells is simple and elegant, the path to clinical reality has been arduous because of the challenge on delivery technologies and vectors, expression regulation, and complex mechanisms of action of therapeutic gene products. Nonetheless, since the first demonstration of in vivo gene transfer into myocardium, there have been a series of advancements that have driven the evolution of heart failure gene therapy from an experimental tool to the threshold of becoming a viable clinical option. The objective of this review is to discuss the current state of the art in the field and point out inevitable innovations on which the future evolution of heart failure gene therapy into an effective and safe clinical treatment relies.
Resumo:
STUDY DESIGN Technical note and case series. OBJECTIVE To introduce an innovative minimal-invasive surgical procedure reducing surgery time and blood loss in management of U-shaped sacrum fractures. SUMMARY OF BACKGROUND Despite their seldom appearance, U-shaped fractures can cause severe neurological deficits and surgical management difficulties. According to the nature of the injury normally occurring in multi-injured patients after a fall from height, a jump, or road traffic accident, U-shaped fractures create a spinopelvic dissociation and hence are highly unstable. In the past, time-consuming open procedures like large posterior constructs or shortening osteotomies with or without decompression were the method of choice, sacrificing spinal mobility. Insufficient restoration of sacrococcygeal angle and pelvic incidence with conventional techniques may have adverse long-term effects in these patients. METHODS In a consecutive series of 3 patients, percutaneous reduction of the fracture with Schanz pins inserted in either the pedicles of L5 or the S1 body and the posterior superior iliac crest was achieved. The Schanz pins act as lever, allowing a good manipulation of the fracture. The reduction is secured by a temporary external fixator to permit optimal restoration of pelvic incidence and sacral kyphosis. Insertion of 2 transsacral screws allow fixation of the restored spinopelvic alignment. RESULTS Anatomic alignment of the sacrum was possible in each case. Surgery time ranged from 90 to 155 minutes and the blood loss was <50 mL in all 3 cases. Two patients had very good results in the long term regarding maintenance of pelvic incidence and sacrococcygeal angle. One patient with previous cauda equina decompression had loss of correction after 6 months. CONCLUSIONS Percutaneous reduction and transsacral screw fixation offers a less invasive method for treating U-shaped fractures. This can be advantageous in treatment of patients with multiple injuries.
Resumo:
Thermal acclimation is frequently cited as a means by which ectothermic animals improve their Darwinian fitness, i.e. the beneficial acclimation hypothesis. As the critical swimming speed (U (crit)) test is often used as a proxy measure of fitness, we acclimated Atlantic cod (Gadus morhua) to 4 and 10 degrees C and then assessed their U (crit) swimming performance at their respective acclimation temperatures and during acute temperature reversal. Because phenotypic differences exist between different populations of cod, we undertook these experiments in two different populations, North Sea cod and North East Arctic cod. Acclimation to 4 or 10 degrees C had a minimal effect on swimming performance or U (crit), however test temperature did, with all groups having a 10-17% higher U (crit) at 10 degrees C. The swimming efficiency was significantly lower in all groups at 4 degrees C arguably due to the compression of the muscle fibre recruitment order. This also led to a reduction in the duration of "kick and glide" swimming at 4 degrees C. No significant differences were seen between the two populations in any of the measured parameters, due possibly to the extended acclimation period. Our data indicate that acclimation imparts little benefit on U (crit) swimming test in Atlantic cod. Further efforts need to identify the functional consequences of the long-term thermal acclimation process.
Resumo:
Reliable detection of JAK2-V617F is critical for accurate diagnosis of myeloproliferative neoplasms (MPNs); in addition, sensitive mutation-specific assays can be applied to monitor disease response. However, there has been no consistent approach to JAK2-V617F detection, with assays varying markedly in performance, affecting clinical utility. Therefore, we established a network of 12 laboratories from seven countries to systematically evaluate nine different DNA-based quantitative PCR (qPCR) assays, including those in widespread clinical use. Seven quality control rounds involving over 21,500 qPCR reactions were undertaken using centrally distributed cell line dilutions and plasmid controls. The two best-performing assays were tested on normal blood samples (n=100) to evaluate assay specificity, followed by analysis of serial samples from 28 patients transplanted for JAK2-V617F-positive disease. The most sensitive assay, which performed consistently across a range of qPCR platforms, predicted outcome following transplant, with the mutant allele detected a median of 22 weeks (range 6-85 weeks) before relapse. Four of seven patients achieved molecular remission following donor lymphocyte infusion, indicative of a graft vs MPN effect. This study has established a robust, reliable assay for sensitive JAK2-V617F detection, suitable for assessing response in clinical trials, predicting outcome and guiding management of patients undergoing allogeneic transplant.
Resumo:
Purpose: Respiratory motion causes substantial uncertainty in radiotherapy treatment planning. Four-dimensional computed tomography (4D-CT) is a useful tool to image tumor motion during normal respiration. Treatment margins can be reduced by targeting the motion path of the tumor. The expense and complexity of 4D-CT, however, may be cost-prohibitive at some facilities. We developed an image processing technique to produce images from cine CT that contain significant motion information without 4D-CT. The purpose of this work was to compare cine CT and 4D-CT for the purposes of target delineation and dose calculation, and to explore the role of PET in target delineation of lung cancer. Methods: To determine whether cine CT could substitute 4D-CT for small mobile lung tumors, we compared target volumes delineated by a physician on cine CT and 4D-CT for 27 tumors with intrafractional motion greater than 1 cm. We assessed dose calculation by comparing dose distributions calculated on respiratory-averaged cine CT and respiratory-averaged 4D-CT using the gamma index. A threshold-based PET segmentation model of size, motion, and source-to-background was developed from phantom scans and validated with 24 lung tumors. Finally, feasibility of integrating cine CT and PET for contouring was assessed on a small group of larger tumors. Results: Cine CT to 4D-CT target volume ratios were (1.05±0.14) and (0.97±0.13) for high-contrast and low-contrast tumors respectively which was within intraobserver variation. Dose distributions on cine CT produced good agreement (< 2%/1 mm) with 4D-CT for 71 of 73 patients. The segmentation model fit the phantom data with R2 = 0.96 and produced PET target volumes that matched CT better than 6 published methods (-5.15%). Application of the model to more complex tumors produced mixed results and further research is necessary to adequately integrate PET and cine CT for delineation. Conclusions: Cine CT can be used for target delineation of small mobile lesions with minimal differences to 4D-CT. PET, utilizing the segmentation model, can provide additional contrast. Additional research is required to assess the efficacy of complex tumor delineation with cine CT and PET. Respiratory-averaged cine CT can substitute respiratory-averaged 4D-CT for dose calculation with negligible differences.
Resumo:
cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.
Resumo:
cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.
Resumo:
This paper presents an overview of the law of the World Trade Organization (WTO) relevant to telecommunications services and correlates this body of law with the current regulatory framework for electronic communications networks and services in the European Community. The latter has been adapted to meet the challenges of technological and market developments in communications, epitomized by the processes of digitization, enhanced transport networks and convergence. The novel solutions embodied in the EC electronic communications regime, notably, a new design of the Significant Market Power mechanism, a projected withdrawal of sector specific regulation and an affirmation of the principle of technological neutrality, pose interesting questions as to the conformity of this reformed EC communications law with the WTO rules on telecommunications services and the obligations of the European Communities and their Member States. Looking beyond the WTO legal compatibility test, essential questions regarding the need for evolution of the WTO telecommunications rules are raised. The present paper contributes to the ongoing debate in that context in light of the EC experience.