950 resultados para Microarray-based genomic hybridization


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wealth of genetic associations for cardiovascular and metabolic phenotypes in humans has been accumulating over the last decade, in particular a large number of loci derived from recent genome wide association studies (GWAS). True complex disease-associated loci often exert modest effects, so their delineation currently requires integration of diverse phenotypic data from large studies to ensure robust meta-analyses. We have designed a gene-centric 50 K single nucleotide polymorphism (SNP) array to assess potentially relevant loci across a range of cardiovascular, metabolic and inflammatory syndromes. The array utilizes a "cosmopolitan" tagging approach to capture the genetic diversity across approximately 2,000 loci in populations represented in the HapMap and SeattleSNPs projects. The array content is informed by GWAS of vascular and inflammatory disease, expression quantitative trait loci implicated in atherosclerosis, pathway based approaches and comprehensive literature searching. The custom flexibility of the array platform facilitated interrogation of loci at differing stringencies, according to a gene prioritization strategy that allows saturation of high priority loci with a greater density of markers than the existing GWAS tools, particularly in African HapMap samples. We also demonstrate that the IBC array can be used to complement GWAS, increasing coverage in high priority CVD-related loci across all major HapMap populations. DNA from over 200,000 extensively phenotyped individuals will be genotyped with this array with a significant portion of the generated data being released into the academic domain facilitating in silico replication attempts, analyses of rare variants and cross-cohort meta-analyses in diverse populations. These datasets will also facilitate more robust secondary analyses, such as explorations with alternative genetic models, epistasis and gene-environment interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large field studies of travelers' diarrhea for multiple destinations are limited by the need to perform stool cultures on site in a timely manner. A method for the collection, transport, and storage of fecal specimens that does not require immediate processing and refrigeration and that is stable for months would be advantageous. This study was designed to determine if enterotoxigenic Escherichia coli (ETEC) and enteroaggregative E. coli (EAEC) DNA could be identified from cards that were processed for the evaluation of fecal occult blood. U.S. students traveling to Mexico during 2005 to 2007 were monitored for the occurrence of diarrheal illness. When ill, students provided a stool specimen for culture and occult blood by the standard methods. Cards then were stored at room temperature prior to DNA extraction. Fecal PCR was performed to identify ETEC and EAEC in DNA extracted from stools and from occult blood cards. Significantly more EAEC cases were identified by PCR that was performed on DNA that was extracted from cards (49%) or from frozen feces (40%) than from culture methods that used HEp-2 adherence assays (13%) (P < 0.001). Similarly, more ETEC cases were detected from card DNA (38%) than from fecal DNA (30%) or by culture that was followed by hybridization (10%) (P < 0.001). The sensitivity and specificity of the card test were 75 and 62%, respectively, compared to those for EAEC by culture and were 50 and 63%, respectively, compared to those for ETEC. DNA extracted from fecal cards that was used for the detection of occult blood is of use in identifying diarrheagenic E. coli.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Spec genes serve as molecular markers for examining the ontogeny of the aboral ectoderm lineage of sea urchin embryos. These genes are activated at late-cleavage stage only in cells contributing to the aboral ectoderm of Strongylocentrotus purpuratus and encode 14,000-17,000 Da calcium-binding proteins. A comparative analysis was undertaken to better understand the mechanisms underlying the activation and function of the Spec genes by investigating Spec homologues from Lytechinus pictus, a distantly related sea urchin. Spec antibodies cross-reacted with 34,000 Da proteins in L. pictus embryos that displayed a similar ontogenetic pattern to that of Spec proteins. One cDNA clone, LpS1, was isolated by hybridization to a synthetic oligonucleotide corresponding to a calcium-binding domain or EF-hand. The LpS1 mRNA has developmental properties similar to those of the Spec mRNAs. LpS1 encodes a 34,000 Da protein containing eight EF-hand domains, which share structural homology with the Spec EF-hands; however, little else in the protein sequence is conserved, implying that calcium-binding is important for Spec protein function. Genomic DNA blot analysis showed two LpS1 genes, LpS1$\alpha$ and LpS1$\beta$, in L. pictus. Partial gene structures for both LpS1$\alpha$ and $\beta$ were constructed based on genomic clones isolated from an L. pictus genomic library. These revealed internal duplications of the LpS1 genes that accounted for the eight EF-hand domains in the LpS1 proteins. Sequencing analysis showed there was little in common among the 5$\sp\prime$-flanking regions of the LpS1 and Spec genes except for the presence of a binding site for the transcription factor USF.^ A sea urchin gene-transfer expression system showed that 762 base pairs (bp) of 5$\sp\prime$-flanking DNA from the LpS1$\beta$ gene were sufficient for correct temporal and spatial expression of reporter genes in sea urchin embryos. Deletions at the 5$\sp\prime$ end to 511, 368, or 108bp resulted in a 3-4 fold decrease in chloramphenicol acetyltransferase (CAT) activity and disrupted the restricted activation of the lac Z gene in aboral ectoderm cells.^ A full-length Spec1 protein and a truncated LpS1 protein were induced and partially purified from an in vitro expression system. (Abstract shortened with permission of author.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complete NotI, SfiI, XbaI and BlnI cleavage maps of Escherichia coli K-12 strain MG1655 were constructed. Techniques used included: CHEF pulsed field gel electrophoresis; transposon mutagenesis; fragment hybridization to the ordered $\lambda$ library of Kohara et al.; fragment and cosmid hybridization to Southern blots; correlation of fragments and cleavage sites with EcoMap, a sequence-modified version of the genomic restriction map of Kohara et al.; and correlation of cleavage sites with DNA sequence databases. In all, 105 restriction sites were mapped and correlated with the EcoMap coordinate system.^ NotI, SfiI, XbaI and BlnI restriction patterns of five commonly used E. coli K-12 strains were compared to those of MG1655. The variability between strains, some of which are separated by numerous steps of mutagenic treatment, is readily detectable by pulsed-field gel electrophoresis. A model is presented to account for the difference between the strains on the basis of simple insertions, deletions, and in one case an inversion. Insertions and deletions ranged in size from 1 kb to 86 kb. Several of the larger features have previously been characterized and some of the smaller rearrangements can potentially account for previously reported genetic features of these strains.^ Some aspects of the frequency and distribution of NotI, SfiI, XbaI and BlnI cleavage sites were analyzed using a method based on Markov chain theory. Overlaps of Dam and Dcm methylase sites with XbaI and SfiI cleavage sites were examined. The one XbaI-Dam overlap in the database is in accord with the expected frequency of this overlap. The occurrence of certain types of SfiI-Dcm overlaps are overrepresented. Of the four subtypes of SfiI-Dcm overlap, only one has a partial inhibitory effect on the activity of SfiI. Recognition sites for all four enzymes are rarer than expected based on oligonucleotide frequency data, with this effect being much stronger for XbaI and BlnI than for NotI and SfiI. The latter two enzyme sites are rare mainly due to apparent negative selection against GGCC (both) and CGGCCG (NotI). The former two enzyme sites are rare mainly due to effects of the VSP repair system on certain di-tri- and tetranucleotides, most notably CTAG. Models are proposed to explain several of the anomalies of oligonucleotide distribution in E. coli, and the biological significance of the systems that produce these anomalies is discussed. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Murine sarcoma viruses constitute a class of replication-defective retroviruses. Cellular transformation may be induced by these viruses in vitro; whereas, fibrosarcomas may result in animals infected with them in vivo (Tooze, 1973; Bishop, 1978). Hybridization studies suggest that murine sarcoma viruses arose by recombination between nondefective murine leukemia virus sequences and certain cellular sequences present in uninfected mouse cells (Hu et al., 1977). A specific gene product, however, has not been implicated in murine sarcoma virus transformation.^ One line of murine sarcoma virus-producing cells, Mo-MuSV-clone 124, (Ball et al., 1973), was studied biochemically because it mainly produces the sarcoma virus as a pseudotype packaged with helper murine leukemia virus proteins. The sarcoma viral RNA was translated in a sophisticated cell-free protein synthesizing system (Murphy and Arlinghaus, 1978). The translation products were analyzed by a number of techniques, including electrophoresis in denaturing gels of SDS polyacrylamide, immunoprecipitation, and peptide mapping. The major products of the total RNA purified from the virus preparation were shown to have molecular weights of about 63,000 (P63('gag)), 42,000 (P42), 40,000 (P40), 38,000 (P38), and 23,000 (P23). The size class of mRNA coding for each of the cell-free products was estimated using a poly(A) selection technique and sucrose gradient fractionation. These analyses were used to localize the coding information related to each of the in vitro synthesized cell-free products within the sarcoma virus genome.^ The major findings of these studies were: (1) the 5' half of the sarcoma viral RNA codes for the 63,000 dalton polypeptide and 42,000 - 38,000 dalton polypeptides derived from the "gag" gene; and (2) the 3' half of the sarcoma viral RNA codes for a 38,000 dalton polypeptide and possibly derived from the cellular acquired sequences. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the detection of expressed sequence tags that are similar to known galactosyltransferase sequences, we have isolated three novel UDP-galactose:beta-N-acetylglucosamine beta1, 3-galactosyltransferase (beta3GalT) genes from a mouse genomic library. The three genes, named beta3GalT-I, -II, and -III, encode type II transmembrane proteins of 326, 422, and 331 amino acids, respectively. The three proteins constitute a distinct subfamily as they do not share any sequence identity with other eucaryotic galactosyltransferases. Also, the entire protein-coding region of the three beta3GalT genes was contained in a single exon, which contrasts with the genomic organization of the beta1,4- and alpha1, 3-galactosyltransferase genes. The three beta3GalT genes were mainly expressed in brain tissue. The expression of the full-length murine genes as recombinant baculoviruses in insect cells revealed that the beta3GalT enzymes share the same acceptor specificity for beta-linked GlcNAc, although they differ in their Km for this acceptor and the donor UDP-Gal. The identification of beta3GalT genes emphasizes the structural diversity present in the galactosyltransferase gene family.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Clinical prognostic groupings for localised prostate cancers are imprecise, with 30-50% of patients recurring after image-guided radiotherapy or radical prostatectomy. We aimed to test combined genomic and microenvironmental indices in prostate cancer to improve risk stratification and complement clinical prognostic factors. METHODS We used DNA-based indices alone or in combination with intra-prostatic hypoxia measurements to develop four prognostic indices in 126 low-risk to intermediate-risk patients (Toronto cohort) who will receive image-guided radiotherapy. We validated these indices in two independent cohorts of 154 (Memorial Sloan Kettering Cancer Center cohort [MSKCC] cohort) and 117 (Cambridge cohort) radical prostatectomy specimens from low-risk to high-risk patients. We applied unsupervised and supervised machine learning techniques to the copy-number profiles of 126 pre-image-guided radiotherapy diagnostic biopsies to develop prognostic signatures. Our primary endpoint was the development of a set of prognostic measures capable of stratifying patients for risk of biochemical relapse 5 years after primary treatment. FINDINGS Biochemical relapse was associated with indices of tumour hypoxia, genomic instability, and genomic subtypes based on multivariate analyses. We identified four genomic subtypes for prostate cancer, which had different 5-year biochemical relapse-free survival. Genomic instability is prognostic for relapse in both image-guided radiotherapy (multivariate analysis hazard ratio [HR] 4·5 [95% CI 2·1-9·8]; p=0·00013; area under the receiver operator curve [AUC] 0·70 [95% CI 0·65-0·76]) and radical prostatectomy (4·0 [1·6-9·7]; p=0·0024; AUC 0·57 [0·52-0·61]) patients with prostate cancer, and its effect is magnified by intratumoral hypoxia (3·8 [1·2-12]; p=0·019; AUC 0·67 [0·61-0·73]). A novel 100-loci DNA signature accurately classified treatment outcome in the MSKCC low-risk to intermediate-risk cohort (multivariate analysis HR 6·1 [95% CI 2·0-19]; p=0·0015; AUC 0·74 [95% CI 0·65-0·83]). In the independent MSKCC and Cambridge cohorts, this signature identified low-risk to high-risk patients who were most likely to fail treatment within 18 months (combined cohorts multivariate analysis HR 2·9 [95% CI 1·4-6·0]; p=0·0039; AUC 0·68 [95% CI 0·63-0·73]), and was better at predicting biochemical relapse than 23 previously published RNA signatures. INTERPRETATION This is the first study of cancer outcome to integrate DNA-based and microenvironment-based failure indices to predict patient outcome. Patients exhibiting these aggressive features after biopsy should be entered into treatment intensification trials. FUNDING Movember Foundation, Prostate Cancer Canada, Ontario Institute for Cancer Research, Canadian Institute for Health Research, NIHR Cambridge Biomedical Research Centre, The University of Cambridge, Cancer Research UK, Cambridge Cancer Charity, Prostate Cancer UK, Hutchison Whampoa Limited, Terry Fox Research Institute, Princess Margaret Cancer Centre Foundation, PMH-Radiation Medicine Program Academic Enrichment Fund, Motorcycle Ride for Dad (Durham), Canadian Cancer Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biomarker research relies on tissue microarrays (TMA). TMAs are produced by repeated transfer of small tissue cores from a 'donor' block into a 'recipient' block and then used for a variety of biomarker applications. The construction of conventional TMAs is labor intensive, imprecise, and time-consuming. Here, a protocol using next-generation Tissue Microarrays (ngTMA) is outlined. ngTMA is based on TMA planning and design, digital pathology, and automated tissue microarraying. The protocol is illustrated using an example of 134 metastatic colorectal cancer patients. Histological, statistical and logistical aspects are considered, such as the tissue type, specific histological regions, and cell types for inclusion in the TMA, the number of tissue spots, sample size, statistical analysis, and number of TMA copies. Histological slides for each patient are scanned and uploaded onto a web-based digital platform. There, they are viewed and annotated (marked) using a 0.6-2.0 mm diameter tool, multiple times using various colors to distinguish tissue areas. Donor blocks and 12 'recipient' blocks are loaded into the instrument. Digital slides are retrieved and matched to donor block images. Repeated arraying of annotated regions is automatically performed resulting in an ngTMA. In this example, six ngTMAs are planned containing six different tissue types/histological zones. Two copies of the ngTMAs are desired. Three to four slides for each patient are scanned; 3 scan runs are necessary and performed overnight. All slides are annotated; different colors are used to represent the different tissues/zones, namely tumor center, invasion front, tumor/stroma, lymph node metastases, liver metastases, and normal tissue. 17 annotations/case are made; time for annotation is 2-3 min/case. 12 ngTMAs are produced containing 4,556 spots. Arraying time is 15-20 hr. Due to its precision, flexibility and speed, ngTMA is a powerful tool to further improve the quality of TMAs used in clinical and translational research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The loci of the porcine tumour necrosis factor genes, alpha (TNFA) and beta (TNFB), have been chromosomally assigned by radioactive in situ hybridization. The genomic probes for TNFA and TNFB yielded signals above 7p11-q11, a region that has been shown earlier to carry the porcine major histocompatibility locus (SLA). These mapping data along with preliminary molecular studies suggest a genomic organization of the SLA that is similar to that of human and murine major histocompatibility complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Oesophageal adenocarcinoma or Barrett's adenocarcinoma (EAC) is increasing in incidence and stratification of prognosis might improve disease management. Multi-colour fluorescence in situ hybridisation (FISH) investigating ERBB2, MYC, CDKN2A and ZNF217 has recently shown promising results for the diagnosis of dysplasia and cancer using cytological samples. METHODS To identify markers of prognosis we targeted four selected gene loci using multi-colour FISH applied to a tissue microarray containing 130 EAC samples. Prognostic predictors (P1, P2, P3) based on genomic copy numbers of the four loci were statistically assessed to stratify patients according to overall survival in combination with clinical data. RESULTS The best stratification into favourable and unfavourable prognoses was shown by P1, percentage of cells with less than two ZNF217 signals; P2, percentage of cells with fewer ERBB2- than ZNF217 signals; and P3, overall ratio of ERBB2-/ZNF217 signals. Median survival times for P1 were 32 vs 73 months, 28 vs 73 months for P2; and 27 vs 65 months for P3. Regarding each tumour grade P2 subdivided patients into distinct prognostic groups independently within each grade, with different median survival times of at least 35 months. CONCLUSIONS Cell signal number of the ERBB2 and ZNF217 loci showed independence from tumour stage and differentiation grade. The prognostic value of multi-colour FISH-assays is applicable to EAC and is superior to single markers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate cancer (CaP) is the most commonly diagnosed malignancy in males in the Western world with one in six males diagnosed in their lifetime. Current clinical prognostication groupings use pathologic Gleason score, pre-treatment prostatic-specific antigen and Union for International Cancer Control-TNM staging to place patients with localized CaP into low-, intermediate- and high-risk categories. These categories represent an increasing risk of biochemical failure and CaP-specific mortality rates, they also reflect the need for increasing treatment intensity and justification for increased side effects. In this article, we point out that 30-50% of patients will still fail image-guided radiotherapy or surgery despite the judicious use of clinical risk categories owing to interpatient heterogeneity in treatment response. To improve treatment individualization, better predictors of prognosis and radiotherapy treatment response are needed to triage patients to bespoke and intensified CaP treatment protocols. These should include the use of pre-treatment genomic tests based on DNA or RNA indices and/or assays that reflect cancer metabolism, such as hypoxia assays, to define patient-specific CaP progression and aggression. More importantly, it is argued that these novel prognostic assays could be even more useful if combined together to drive forward precision cancer medicine for localized CaP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE The microRNA miR-27a was recently shown to directly regulate dihydropyrimidine dehydrogenase (DPD), the key enzyme in fluoropyrimidine catabolism. A common polymorphism (rs895819A>G) in the miR-27a genomic region (MIR27A) was associated with reduced DPD activity in healthy volunteers, but the clinical relevance of this effect is still unknown. Here, we assessed the association of MIR27A germline variants with early-onset fluoropyrimidine toxicity. EXPERIMENTAL DESIGN MIR27A was sequenced in 514 patients with cancer receiving fluoropyrimidine-based chemotherapy. Associations of MIR27A polymorphisms with early-onset (cycles 1-2) fluoropyrimidine toxicity were assessed in the context of known risk variants in the DPD gene (DPYD) and additional covariates associated with toxicity. RESULTS The association of rs895819A>G with early-onset fluoropyrimidine toxicity was strongly dependent on DPYD risk variant carrier status (Pinteraction = 0.0025). In patients carrying DPYD risk variants, rs895819G was associated with a strongly increased toxicity risk [OR, 7.6; 95% confidence interval (CI), 1.7-34.7; P = 0.0085]. Overall, 71% (12/17) of patients who carried both rs895819G and a DPYD risk variant experienced severe toxicity. In patients without DPYD risk variants, rs895819G was associated with a modest decrease in toxicity risk (OR, 0.62; 95% CI, 0.43-0.9; P = 0.012). CONCLUSIONS These results indicate that miR-27a and rs895819A>G may be clinically relevant for further toxicity risk stratification in carriers of DPYD risk variants. Our data suggest that direct suppression of DPD by miR-27a is primarily relevant in the context of fluoropyrimidine toxicity in patients with reduced DPD activity. However, miR-27a regulation of additional targets may outweigh its effect on DPD in patients without DPYD risk variants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Establishment of phylogenetic relationships remains a challenging task because it is based on computational analysis of genomic hot spots that display species-specific sequence variations. Here, we identify a species-specific thymine-to-guanine sequence variation in the Glrb gene which gives rise to species-specific splice donor sites in the Glrb genes of mouse and bushbaby. The resulting splice insert in the receptor for the inhibitory neurotransmitter glycine (GlyR) conveys synaptic receptor clustering and specific association with a particular synaptic plasticity-related splice variant of the postsynaptic scaffold protein gephyrin. This study identifies a new genomic hot spot which contributes to phylogenetic diversification of protein function and advances our understanding of phylogenetic relationships.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE The implementation of genomic-based medicine is hindered by unresolved questions regarding data privacy and delivery of interpreted results to health-care practitioners. We used DNA-based prediction of HIV-related outcomes as a model to explore critical issues in clinical genomics. METHODS We genotyped 4,149 markers in HIV-positive individuals. Variants allowed for prediction of 17 traits relevant to HIV medical care, inference of patient ancestry, and imputation of human leukocyte antigen (HLA) types. Genetic data were processed under a privacy-preserving framework using homomorphic encryption, and clinical reports describing potentially actionable results were delivered to health-care providers. RESULTS A total of 230 patients were included in the study. We demonstrated the feasibility of encrypting a large number of genetic markers, inferring patient ancestry, computing monogenic and polygenic trait risks, and reporting results under privacy-preserving conditions. The average execution time of a multimarker test on encrypted data was 865 ms on a standard computer. The proportion of tests returning potentially actionable genetic results ranged from 0 to 54%. CONCLUSIONS The model of implementation presented herein informs on strategies to deliver genomic test results for clinical care. Data encryption to ensure privacy helps to build patient trust, a key requirement on the road to genomic-based medicine.Genet Med advance online publication 14 January 2016Genetics in Medicine (2016); doi:10.1038/gim.2015.167.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Large field studies in travelers' diarrhea (TD) in multiple destinations are limited by the need to perform stool cultures on site in a timely manner. A method for the collection, transport and storage of fecal specimens that does not require immediate processing, refrigeration and is stable for months would be advantageous. ^ Objectives. Determine if enteric pathogen bacterial DNA can be identified in cards routinely used for evaluation of fecal occult blood. ^ Methods. U.S. students traveling to Mexico in 2005-07 were followed for occurrence of diarrheal illness. When ill, students provided a stool specimen for culture and occult blood by the standard method. Cards were then stored at room temperature prior to DNA extraction. A multiplex fecal PCR was performed to identify enterotoxigenic Escherichia coli and enteroaggregative E. coli (EAEC) in DNA extracted from stools and occult blood cards. ^ Results. Significantly more EAEC cases were identified by PCR done in DNA extracted from cards (49%) or from frozen feces (40%) than by culture followed by HEp-2 adherence assays (13%). Similarly more ETEC cases were detected in card DNA (38%) than fecal DNA (30%) or culture followed by hybridization (10%). Sensitivity and specificity of the card test was 75% and 62%, respectively, and 50% and 63%, respectively, when compared to EAEC and ETEC culture, respectively, and 53% and 51%, respectively compared to EAEC multiplex fecal PCR and 56% and 70%, respectively, compared to ETEC multiplex fecal PCR. ^ Conclusions. DNA extracted from fecal cards used for detection of occult blood is of use in detecting enteric pathogens. ^