897 resultados para Measurement in Bacteriology
Resumo:
The momentum distribution of electrons from semileptonic decays of charm and bottom quarks for midrapidity |y|< 0.35 in p+p collisions at s=200 GeV is measured by the PHENIX experiment at the Relativistic Heavy Ion Collider over the transverse momentum range 2 < p(T)< 7 GeV/c. The ratio of the yield of electrons from bottom to that from charm is presented. The ratio is determined using partial D/D -> e(+/-)K(-/+)X (K unidentified) reconstruction. It is found that the yield of electrons from bottom becomes significant above 4 GeV/c in p(T). A fixed-order-plus-next-to-leading-log perturbative quantum chromodynamics calculation agrees with the data within the theoretical and experimental uncertainties. The extracted total bottom production cross section at this energy is sigma(bb)=3.2(-1.1)(+1.2)(stat)(-1.3)(+1.4)(syst)mu b.
Resumo:
In this work, we demonstrate field-induced Bose-Einstein condensation (BEC) in the organic compound NiCl(2)-4SC(NH(2))(2) using ac susceptibility measurements down to 1 mK. The Ni S=1 spins exhibit 3D XY antiferromagnetism between a lower critical field H(c1)similar to 2 T and a upper critical field H(c2)similar to 12 T. The results show a power-law temperature dependence of the phase transition line H(c1)(T)-H(c1)(0)=aT(alpha) with alpha=1.47 +/- 0.10 and H(c1)(0)=2.053 T, consistent with the 3D BEC universality class. Near H(c2), a kink was found in the phase boundary at approximately 150 mK.
Resumo:
We report the first measurement of the parity-violating single-spin asymmetries for midrapidity decay positrons and electrons from W(+) and W(-) boson production in longitudinally polarized proton-proton collisions at root s = 500 GeV by the STAR experiment at RHIC. The measured asymmetries, A(L)(W+) = -0.27 +/- 0.10(stat.) +/- 0.02(syst.) +/- 0.03(norm.) and A(L)(W-) = 0.14 +/- 0.19(stat.) +/- 0.02(syst.) +/- 0.01(norm.), are consistent with theory predictions, which are large and of opposite sign. These predictions are based on polarized quark and antiquark distribution functions constrained by polarized deep-inelastic scattering measurements.
Resumo:
The contribution of B meson decays to nonphotonic electrons, which are mainly produced by the semileptonic decays of heavy-flavor mesons, in p + p collisions at root s = 200 GeV has been measured using azimuthal correlations between nonphotonic electrons and hadrons. The extracted B decay contribution is approximately 50% at a transverse momentum of p(T) >= 5 GeV/c. These measurements constrain the nuclear modification factor for electrons from B and D meson decays. The result indicates that B meson production in heavy ion collisions is also suppressed at high p(T).
Resumo:
We report the measurement of charged D* mesons in inclusive jets produced in proton-proton collisions at a center-of-mass energy root s = 200 GeV with the STAR experiment at the Relativistic Heavy Ion Collider. For D* mesons with fractional momenta 0.2< z< 0.5 in inclusive jets with 11.5 GeV mean transverse energy, the production rate is found to be N(D*(+) + D*(-))/N(jet) = 0.015 +/- 0.008(stat) +/- 0.007(sys). This rate is consistent with perturbative QCD evaluation of gluon splitting into a pair of charm quarks and subsequent hadronization.
Resumo:
We determined the absolute branch of the T=2 superallowed decay of (32)Ar by detecting the beta(+)-delayed protons and gamma decays of the daughter state. We obtain b(SA)(beta)=(22.71 +/- 0.16)%, which represents the first determination of a proton branch to better than 1%. Using this branch along with the previously determined (32)Ar half-life and energy release, we determined ft=(1552 +/- 12) s for the superallowed decay. This ft value, together with the corrected Ft value extracted from previously known T=1 superallowed decays, yields a measurement of the isospin symmetry breaking correction in (32)Ar decay delta(exp)(C)=(2.1 +/- 0.8)%. This can be compared to a theoretical calculation delta(C)=(2.0 +/- 0.4)%. As by-products of this work, we determined the gamma and proton branches for the decay of the lowest T=2 state of (32)Cl, made a precise determination of the total proton branch and relative intensities of proton groups that leave (31)S in its first excited state and deduced an improved value for the (32)Cl mass.
Resumo:
This paper describes a new and simple method to determine the molecular weight of proteins in dilute solution, with an error smaller than similar to 10%, by using the experimental data of a single small-angle X-ray scattering (SAXS) curve measured on a relative scale. This procedure does not require the measurement of SAXS intensity on an absolute scale and does not involve a comparison with another SAXS curve determined from a known standard protein. The proposed procedure can be applied to monodisperse systems of proteins in dilute solution, either in monomeric or multimeric state, and it has been successfully tested on SAXS data experimentally determined for proteins with known molecular weights. It is shown here that the molecular weights determined by this procedure deviate from the known values by less than 10% in each case and the average error for the test set of 21 proteins was 5.3%. Importantly, this method allows for an unambiguous determination of the multimeric state of proteins with known molecular weights.
Resumo:
Background: There are several studies in the literature depicting measurement error in gene expression data and also, several others about regulatory network models. However, only a little fraction describes a combination of measurement error in mathematical regulatory networks and shows how to identify these networks under different rates of noise. Results: This article investigates the effects of measurement error on the estimation of the parameters in regulatory networks. Simulation studies indicate that, in both time series (dependent) and non-time series (independent) data, the measurement error strongly affects the estimated parameters of the regulatory network models, biasing them as predicted by the theory. Moreover, when testing the parameters of the regulatory network models, p-values computed by ignoring the measurement error are not reliable, since the rate of false positives are not controlled under the null hypothesis. In order to overcome these problems, we present an improved version of the Ordinary Least Square estimator in independent (regression models) and dependent (autoregressive models) data when the variables are subject to noises. Moreover, measurement error estimation procedures for microarrays are also described. Simulation results also show that both corrected methods perform better than the standard ones (i.e., ignoring measurement error). The proposed methodologies are illustrated using microarray data from lung cancer patients and mouse liver time series data. Conclusions: Measurement error dangerously affects the identification of regulatory network models, thus, they must be reduced or taken into account in order to avoid erroneous conclusions. This could be one of the reasons for high biological false positive rates identified in actual regulatory network models.
Resumo:
The effect of conversion from forest-to-pasture upon soil carbon stocks has been intensively discussed, but few studies focus on how this land-use change affects carbon (C) distribution across soil fractions in the Amazon basin. We investigated this in the 20 cm depth along a chronosequence of sites from native forest to three successively older pastures. We performed a physicochemical fractionation of bulk soil samples to better understand the mechanisms by which soil C is stabilized and evaluate the contribution of each C fraction to total soil C. Additionally, we used a two-pool model to estimate the mean residence time (MRT) for the slow and active pool C in each fraction. Soil C increased with conversion from forest-to-pasture in the particulate organic matter (> 250 mu m), microaggregate (53-250 mu m), and d-clay (< 2 mu m) fractions. The microaggregate comprised the highest soil C content after the conversion from forest-to-pasture. The C content of the d-silt fraction decreased with time since conversion to pasture. Forest-derived C remained in all fractions with the highest concentration in the finest fractions, with the largest proportion of forest-derived soil C associated with clay minerals. Results from this work indicate that microaggregate formation is sensitive to changes in management and might serve as an indicator for management-induced soil carbon changes, and the soil C changes in the fractions are dependent on soil texture.
Resumo:
In this study, the innovation approach is used to estimate the measurement total error associated with power system state estimation. This is required because the power system equations are very much correlated with each other and as a consequence part of the measurements errors is masked. For that purpose an index, innovation index (II), which provides the quantity of new information a measurement contains is proposed. A critical measurement is the limit case of a measurement with low II, it has a zero II index and its error is totally masked. In other words, that measurement does not bring any innovation for the gross error test. Using the II of a measurement, the masked gross error by the state estimation is recovered; then the total gross error of that measurement is composed. Instead of the classical normalised measurement residual amplitude, the corresponding normalised composed measurement residual amplitude is used in the gross error detection and identification test, but with m degrees of freedom. The gross error processing turns out to be very simple to implement, requiring only few adaptations to the existing state estimation software. The IEEE-14 bus system is used to validate the proposed gross error detection and identification test.
Resumo:
The purpose of the present investigation was to gain an understanding of the nature of the carbon contamination on the surface of standard steel transmission electron spectroscopy (TEM) specimens, the effect of exposure of a clean specimen to normal laboratory air, and the efficacy of plasma-cleaning treatments. This knowledge is a necessary prerequisite to the development of appropriate specimen preparation and/or specimen cleaning methods. X-ray photoelectron spectroscopy in combination with argon ion beam profiling was used to characterize the specimen surfaces of X65 steel and 316 stainless steel. The only clean carbon-free surface obtained was that during argon etching of the sample in the surface analysis chamber. Any exposure of a previously cleaned sample to laboratory air resulted in a rapid carbon (hydrocarbon) contamination of the sample surface and the development of surface oxidation, Plasma cleaning with subsequent exposure of the specimen to the laboratory air also resulted in a carbon-contaminated surface. This suggests that procedures of preparation of TEM specimens of steels outside an ultrahigh vacuum chamber are unlikely to result in the lowering of contamination rates on specimens to levels where measurements for carbon in the grain boundaries are possible. What is needed is a cleaning system as an integral part of the specimen insertion system into the field-emission scanning transmission electron microscope. This cleaning could be carried out by argon ion etching. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
The role of Ca2+ in the regulation of the cell cycle has been investigated mostly in studies assessing global cytosolic free Ca2+. Recent studies, however, have used unique techniques to assess Ca2+ in subcellular organelles, such as mitochondria, and in discrete regions of the cytoplasm. These studies have used advanced fluorescence digital imaging techniques and Ca2+-sensitive fluorescence probes, and/or targeting of Ca2+-sensitive proteins to intracellular organelles. The present review describes the results of some of these studies and the techniques used. The novel techniques used to measure Ca2+ in microdomains and intracellular organelles are likely to be of great use in future investigations assessing Ca2+ homeostasis during the cell cycle.
Resumo:
We consider continuous observation of the nonlinear dynamics of single atom trapped in an optical cavity by a standing wave with intensity modulation. The motion of the atom changes the phase of the field which is then monitored by homodyne detection of the output field. We show that the conditional Hilbert space dynamics of this system, subject to measurement-induced perturbations, depends strongly on whether the corresponding classical dynamics is regular or chaotic. If the classical dynamics is chaotic, the distribution of conditional Hilbert space vectors corresponding to different observation records tends to be orthogonal. This is a characteristic feature of hypersensitivity to perturbation for quantum chaotic systems.
Resumo:
In quantum measurement theory it is necessary to show how a, quantum source conditions a classical stochastic record of measured results. We discuss mesoscopic conductance using quantum stochastic calculus to elucidate the quantum nature of the measurement taking place in these systems. To illustrate the method we derive the current fluctuations in a two terminal mesoscopic circuit with two tunnel barriers containing a single quasi bound state on the well. The method enables us to focus on either the incoming/ outgoing Fermi fields in the leads, or on the irreversible dynamics of the well state itself. We show an equivalence between the approach of Buttiker and the Fermi quantum stochastic calculus for mesoscopic systems.
Resumo:
Current theoretical thinking about dual processes in recognition relies heavily on the measurement operations embodied within the process dissociation procedure. We critically evaluate the ability of this procedure to support this theoretical enterprise. We show that there are alternative processes that would produce a rough invariance in familiarity (a key prediction of the dual-processing approach) and that the process dissociation procedure does not have the power to differentiate between these alternative possibilities. We also show that attempts to relate parameters estimated by the process dissociation procedure to subjective reports (remember-know judgments) cannot differentiate between alternative dual-processing models and that there are problems with some of the historical evidence and with obtaining converging evidence. Our conclusion is that more specific theories incorporating ideas about representation and process are required.