942 resultados para Maximum Principles
Resumo:
Accurate ab initio density-functional calculations are performed to investigate the relationship of the ground-state crystal structures and electronic properties of Ag2BiO3 compound. The results indicate that Ag2BiO3 in Pnna phase, in which the bismuth atoms occupy the same Wyckoff positions, exhibits metallic conductivity, while in Pnn2 and Pn phases, Ag2BiO3 exhibits semiconducting character, which is in agreement with the experimental results. Charge ordering is indeed induced by the crystal inversion twin in the Pnn2 phase compared with the Pnna phase. In the low temperature phase Pn, the charge ordering is similar to that of Pnn2 phase although it is more distorted in Pn phase. In addition, the calculation indicates that the charge ordering is caused in the 6s electron rearrangement.
Resumo:
First-principles calculations using the augmented plane wave plus local orbital method, as implemented in the WIEN2K code, have been used to investigate the structural, electronic, and magnetic properties of the layered perovskite Cs2AgF4. Our calculations indicate that an orthorhombic ground state for Cs2AgF4 is energetically favored over tetragonal. We also find that Cs2AgF4 should be a strong two-dimensional ferromagnet, with very weak antiferromagnetic coupling between the layers, in agreement with the experiment. More importantly, an antiferrodistortive ordering of z(2)-x(2) and z(2)-y(2) orbitals is inferred from the density of states and from a spin density isosurface analysis.
Resumo:
The electronic structure of CaCu3Mn4O12 and LaCu3Mn4O12 was investigated using a full-potential linearized augmented plane wave method within the Generalized Gradient Approximation (GGA). The ferrimagnetic and ferromagnetic states in these two compounds were investigated and the calculated spin magnetic moments were found to be close to the available experimental values. Calculations of spin polarization for these two oxides show that the ferrimagnetic configurations are the energetically favored ground state, which is consistent with experimental observation. The calculations predict that CaCu3Mn4O12 is a semiconductor and that LaCu3Mn4O12 is a half-metallic material. Furthermore, the relevance of these different electronic structures to the magnetoresistance is discussed.
Resumo:
First-principle calculations are performed to investigate the structural, elastic, and electronic properties of ReB2 and WB2. The calculated equilibrium structural parameters of ReB2 are consistent with the available experimental data. The calculations indicate that WB2 in the P6(3)/mmc space group is more energetically stable under the ambient condition than in the P6/mmm. Based on the calculated bulk modulus, shear modulus of polycrystalline aggregate, ReB2 and WB2 can be regarded as potential candidates of ultra-incompressible and hard materials. Furthermore, the elastic anisotropy is discussed by investigating the elastic stiffness constants. Density of states and electron density analysis unravel the covalent bonding between the transition metal atoms and the boron atoms as the driving force of the high bulk modulus and high shear modulus as well as small Poisson's ratio.
Resumo:
A novel competition dialysis assay was used to investigate the structural selectivity of a series of substituted 2-(2-naphthyl)quinoline compounds designed to target triplex DNA. The interaction of 14 compounds with 13 different nucleic acid sequences and structures was studied. A striking selectivity for the triplex structure poly dA:[poly dT](2) was found for the majority of compounds studied. Quantitative analysis of the competition dialysis binding data using newly developed metrics revealed that these compounds are among the most selective triplex-binding agents synthesized to date. A quantitative structure-affinity relationship (QSAR) was derived using triplex binding data for all 14 compounds used in these studies. The QSAR revealed that the primary favorable determinant of triplex binding free energy is the solvent accessible surface area. Triplex binding affinity is negatively correlated with compound electron affinity and the number of hydrogen bond donors. The QSAR provides guidelines for the design of improved triplex-binding agents.
Resumo:
An expert system for the elucidation of the structure of organic compounds (ESESOC) has been developed. The heart of the ESESOC is formed by the structure generator as an integral part, which receives the specific type of information (molecular formula, s
Resumo:
This review paper provides a brief review on the development of ideas in the fields of the sea level change of the ECS (East China Sea), the history of the Yangtze River entering the sea and paleochannels in the shelf of the ECS since the Last Glacial Maximum (LGM). The paper summarizes two opposite theories about the Yangtze River entering the sea during the LGM. One theory is that the Yangtze River input a lacustrine in the north of Jiangsu province which was defunct in middle Holocene, and the river was once dry. The other was that the Yangtze River still existed and entered into the Okinawa Trough during the LGM, but scholars share different opinions on which course the river ran across and which place the river input the trough. This paper concludes future work is to study the evolution of the Yangtze River and the paleoclimate and the corresponding events as a whole from the view of regional and even global change, and more attention should be paid to the study on mud sediment, the Yangtze River's response to the changes in climate and sea-level, and the channel metamorphosis.
Resumo:
During the period of the post-glacial transgression maximum (PGTM), there was a huge trumpet estuary in the modern Changjiang River Delta area. The location and the shape of the Paleo-Changjiang River Estuary (PCRE) were much different from those of the present Changjiang River Estuary. The study on the change of characteristics of tidal wave in the Changjiang River mouth area since the PGTM can help to understand better the dynamic development of the Changjiang River Delta. The course curves of tidal level and tidal current velocity during a single tidal cycle for 35 points are calculated, and characteristics of tidal waves in the PCRE and its adjacent area are compared with those of tidal waves in the modern Changjiang River mouth area. The results show that the tidal waves within the PCRE and in its adjacent area during the period of the PGTM belonged to standing wave or a mixture of standing wave and progressive wave. Since then, the tidal wave in the Changjiang River mouth become gradually to be progressive wave with the PCRE being filled and the Changjiang River mouth shifting southeastwards.
Resumo:
The concentration of suspended particulate matter (SPM), sedimentation flux, and various forms of phosphorus and silica in turbidity maximum zone (TMZ) in the Changjiang (Yangtze) estuary was studied. Based on the budget of P and Si, their mass balances in the TMZ were calculated. Results show that the variation in concentration of dissolved inorganic silicon (DISi) was mainly controlled by seawater dilution, while that of dissolved inorganic phosphor-us (DIP) was considerably affected by the buffering of suspended matter and sediment. Our experiments showed that the sedimentation fluxes of SPM and particulate inorganic phosphorus (PIP), total particulate phosphorus (TPP), particulate inorganic silicon (PISi), and biological silicon (BSi) in the TMZ were 238.4 g m(-2) d(-1) and 28.3, 43.1, 79.0, 63.0 mg m(-2) d(-1), respectively. In addition, a simple method to estimate the ratio of resuspension of sediment in the TMZ was established, with which the rate in surface and bottom waters of the TMZ accounted for 55.7 and 66.1% of the total SPM, respectively, indicating that the sediment resuspension in the TMZ influenced significantly the mass balances of P and Si. Particulate adsorbed P (60.8%) and 35.5% of total particulate P discharged from the river were filtered and then deposited in the TMZ. The input flux of PIP from the river mouth was 55.9% of that of DIP, being important as biologically available P, while that of PISi was only 3.5% of DISi, showing that particulate adsorbed Si was much less important than particulate adsorbed P. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
文章讲述了交通监控系统中应用视频图像流来跟踪运动目标并对目标进行分类的具体过程和原则.基于目标检测提出了双差分的目标检测算法,目标分类应用到了连续时间限制和最大可能性估计的原则,目标跟踪则结合检测到的运动目标图像和当前模板进行相关匹配.实验结果表明,该过程能够很好地探测和分类目标,去除背景信息的干扰,并能够在运动目标部分被遮挡、外观改变和运动停止等情况下连续地跟踪目标.
Resumo:
The large ancient underground rock caverns in Longyou is an important component of grotto cultural. Current task facing the long-term preservation of these unmovable cultural relics is arduous and challenging. The deformation failure of the caverns' surrounding rock is deteriorating. The weathering velocity of these caverns is accelerating. With the strength of caverns' surrounding rock worsening, critical rocks were generated in local regions of the caverns' vault and posing a threat to the security of people passing by. Selection of a maximum-security route and construction a aisle in the caverns might be an efficient way to ensure the security of tourists and reach the target of long-term preservation. The deformation and destruction of the ancient underground caverns is primarily dominated by geological conditions and the special structure of caverns. Based on field investigation, several fundamental conditions for deformation and failure are recognized, and nine deformation and fracture patterns of the Longyou grotto are proposed. In order to judge the stability of caverns’ surrounding rock, the element safety coefficient method is presented. An explicit explanation for the meaning of the method is deduced using Mohr-Coulomb strength criterion. Numerical analyses are carried out in the dissertation through FLAC3D code. Through numerical analysis, the stress distribution regularities of the caverns’ roofs, piles and public side wall are analysed, and the stability properties of caverns’ surrounding rock are also assessed. At the same time, the element safety coefficient method is introduced to contrast the stability degree of different regions in caverns. The above analyses are bases for choosing the optimal tourism routes in the caverns of Longyou grotto. The impact of surface load on the stability of shallow buried cavities in Longyou grotto is evaluated, the results show that building load has significant influence on the stability of the No.1 cavern’s roof, pile and public side wall between the No.1 cavern and the No.2 cavern, pedestrian load has less impact on the stability of surrounding rock than building load. The principles for choosing the optimal tourism routes in the caverns are discussed. With these principles, the dissertation makes a systematic research on the geological analytic method, numerical analytic method and meeting tourism requirements method, which are used in selecting the optimal tourism routes in the caverns. In order to achieve the best effect in the process of tourism routes selection, the above three method are integrated through Theory of Engineering Geomechanics Meta-system(EGMS). According to field investigations, numerical analyses, tourism requirements and expert experiences, the optimal tourism routes through No.1 to No.5 cavern are determined preliminarily. The obtained results from the research work are useful for the security aisle's construction, they also have reference value to other projects in practice.
Resumo:
2002
Resumo:
Equipe multidisciplinar: Ademir Hugo Zimmer (CNPGC) José Diomedes Barbosa Neto (UFPA) Liana Jank (CNPGC) Paulo Vargas Peixoto (UFRRJ) Rodrigo Amorim Barbosa (CNPGC) Vanessa Felipe de Souza (CNPGC)