995 resultados para Materiais cerâmicos - Propriedades mecânicas


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Therebar of aluminum 1350 AA produced by CBA are used inthe manufacture of wires and cables for electric power transmission, which marketshows increasingly favorableto aluminum due to itslow densityand high electrical conductivity, but to ensure that this materialmeets all specifications of projectsfor electricity transmission, it must have homogeneity in the chemicaland mechanicalproperties.One of the points of improvement in the process of rod production isreducing the high variation of the limitof tensile strengthalong the coils, therefore, this work seeks a better understanding of the factors that significantly influence the mechanical properties of rebar, specifically assessing the influence oftemperatureat the output of the coils, which can cause a recovery effect on the material andif thereare relevantdifferences between the two modes of rebar production: auto and manual.Samples of six coils have been specifically produced forthis study, which weresubsequently subjected to different annealing temperatures for one hour and ten minutes, similar to what occurs in the output of the coil from the machine. The tensile tests showed that aluminum 1350 AA is significantly influenced by temperature, whose behavior was very similar to that presented in the literature. It was found that the phenomenon of recovery occurred more significantly at high temperatures. Through the optical electron microscope Zeiss, 18 surface maps were made with 100x magnification for each sample in different conditions and the images were analyzed using entropy and fractal dimension, aiming to relate the condition of surface hardening on mechanical property of the samples in that condition. The results showed that these methods can be applied, provided they do not have any kind of imperfection on the surface, once they can influence the results. The study concluded that a more efficient cooling is required in ... (Complete abstract click electronic access below)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a study that aims to validate the fatigue analyses developed on finite element commercial software, ANSYS Workbench. It was based on mechanical tests development of traction and hardness, to verify the mechanical properties of material that the shaft was manufactured (ABNT 1045 steel), it was developed bend test, with purpose to prove the confiability degree of computational analyses, obtaining the maximum stress in a work condition determined with 40 [kgf] of load applied, and at the end, was developed the fatigue test to obtain the number of cycles that the transmission shaft can support in a work condition with 8 [kgf] of load applied. The results obtained during the work present, have to be quite satisfactory with the theoretically expected

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work polymeric composites reinforced with cotton fibers, from the textile industry, were developed in order to manufacture printed circuit boards. It was used expanded polystyrene (EPS) as a thermoplastic matrix by melting it. For the obtention of 10% and 15% of fiber volume fraction in cotton fibers composites, it was used wasted cotton fibers as an incentive of recycling and reusing of the domestic and industrial wastes as well as for Expanded Polystyrene(EPS). The mechanical properties of the composites were evaluated by tensile and flexural strength from standardized test methods. Composites were characterized by a Scanning Electron Microscopy (SEM), Thermogravimetry (TG/DTG), Differential Scanning Calorimetry (DSC) and dielectric analysis. The analysis of the results showed that fiber in the composite directly influenced in the thermal and mechanical properties

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of ceramic materials is constantly evolving, especially in research related to advanced ceramics. Once these have many applications, this paper relates to synthesis by solid state reaction of calcium copper titanate (CCTO) ceramic material means doping with strontium. The powders were characterized using thermal analysis techniques such as TG (thermogravimetry), DTA (differencial thermal analysis), dilatometry, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The compositions have submitted weight loss at around 6% with respect to carbonates used, and was attributed a temperature of 950° C to perform the calcination according to thermogravimetric analysis. After the process of calcination and milling, the particles presented approximately spherical shapes and high percentages of substitution Ca2+ with Sr2+ was evident by the presence of necks between to particles due to the milling calcination. Analyses with Energy Dispersive Spectroscopy (EDS) showed stoichiometries in different samples very similar to the theoretical stoichiometry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technological advancement in order to improve the methods of obtaining energy sources such as oil and natural gas is mainly motivated by the recent discovery of oil reserves. So, increasingly , there is a need for a thorough knowledge of the materials used in the manufacture of pipelines for transportation and exploration of oil and natural gas. The steels which follow the API standard (American Petroleum Institute), also known as high strenght low alloy (hsla), are used in the manufacture of these pipes, as they have, with their welded joints, mechanical properties to withstand the working conditions to which these ducts will be submitted . The objective of this study is to evaluate the fatigue behavior in microalloyed steel grade API 5L X80 welded by process HF / ERW . For this, axial fatigue tests to obtain S-N curve (stress vs. number of cycles ) were conducted. To complement the study, it was performed metallographic , fractographic , Vickers hardness tests and tensile tests to characterize the mechanical properties of the steel and check whether the values satisfy the specifications of the API 5L standard . From the fatigue tests , it was concluded that the surface finish influences directly on the fatigue life of the material

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work polystyrene composites reinforced with recycled sisal fibers were processed, in order to apply in the manufacture of printed circuit boards. A thermoplastic matrix of recycled polystyrene was used, this material came from waste expanded polystyrene (EPS) used in appliance's packages. Composites were prepared with 15% and 25% of sisal fibers. To obtain the composites, wasted EPS and natural sisal fibers were chosen, to encourage recycling and reuse of household waste and also the use of renewable resources. The composites were analyzed by standard tensile and flexural test, in order to verify the mechanical properties of the material. The characterization of the composite was done by scanning electron microscopy (SEM) , thermogravimetry (TGA / DTG) , differential scanning calorimetry (DSC) and dielectric analysis . The analysis of the results showed that the percentage of fibers in the composite influences directly the thermal and mechanical properties. Plates with a lower percentage of fibers showed superior properties at a higher percentage. The composite material obtained is easy to process and it's use is feasible for the confection of printed circuit boards, considering it's mechanical, thermal and insulative properties

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plastic deformation is widely used in the metallurgical market due to its positive factors such as low prices and high speed production. Forming process products are obtained in high quality, both surface quality and mechanical properties. Friction is an importante factor in metal forming. Friction study in metal forming can be accomplished indirectly, such as the ring test of friction. Two samples of different materials being mild steel and copper alloy were used. The results showed the influence of friction in the flow behavior of the deformation of the second phase, as evidenced by standard metallography. It is observed that in the outer regions of the ring, plastic deformation occured in the radial direction. In the central region of the disc deformation occured in the direction of compression and the inner region of the ring flux lines showed a significant deformation in the radial direction towards the center of the ring

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research involving new materials has always been considered as a differential in the development of a technology company. This occurred naturally since ancient times, often motivated by reasons of a certain age, where the most common material used was also the name of your time and may be cited as an example the Bronze Age, and later was the Iron. Currently, the use of firearms are they used in resolving conflicts between countries, or a more equivocal, as an instrument of social banditry make innovations in the area of shielding welcome, whether for personal use, in the form of vests or vehicle such as cars, tanks and even aircraft. In this context, is a Silicon Carbide Ceramic, with low density and high hardness. Thus, the aim of this study is the evaluation and comparison of these materials, seeking to improve their properties by means of additives such as boron and silicon metal and amorphous YAG. For this work, the specimens were pre-shaped by means of uniaxial later to be referred for isostatic pressing and sintering. The maximum percentage for each additive was 5%, except for the YAG whose percentage was 8.2% (mass percentage). All compositions were subjected to the same tests (x-ray diffraction, apparent density, optical microscopy, Vickers hardness, scanning electron Microscopita), so that one could draw a comparison between the materials under study, samples that showed better mechanical properties and micro structural, related here by hardness testing and microscopy (optical and SEM) were the silicon carbide doped with YAG and alumina samples, demonstrating the potential of these materials for ballistic protection. Other compositions have high porosity, which is highly undesirable, since in order to harmful influences on the mechanical properties discussed below

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bamboo has been studied because of its peculiar mechanical properties and numerous possibilities of use, besides being a fast-growing grass and short cutting cycle. This study aimed to analyze the mechanical characteristics of wood-bamboo composite material, where the samples were developed from the combination of layers of bamboo as a structural reinforcement in solid pieces of pine and EGP panel parts. The species of wood used was Pinus taeda, and the bamboo species Guadua angustifolia and Dendrocalamus giganteus. All work was conducted at the Universidade Estadual Paulista - UNESP in the laboratory of Physical and Mechanical Properties of Wood. Tests including the density and tension parallel to grain of the bamboo species used and the static bending of composites in order to use this in the furniture industry. For the tests have been used as a basis the requirements of the normative document NBR 7190/97. The values obtained in the tests showed a significant increase in strength and stiffness compared to unreinforced parts, where there was an increase in MOE and MOR in static bending in all specimens used in evidence. The results showed the possibility of reducing sections in furniture components and the possibility of improving the mechanical properties of parts with defects found in wood of Pinus Itapeva region of São Paulo

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As they have excellent mechanical properties, corrosion resistance and biocompatibility, much research has been conducted with respect to biomedical applications of titanium alloys. This work aims to study the experimental system binary alloy Ti-15Mo, in the raw state of fusion and heat treatment after homogenization, solubilization and calcination (simulating conditions employed for nanotube growth) targeting biomedical applications. Samples were obtained by casting the components in an electric arc furnace with inert atmosphere of argon. After obtaining the alloy, it was heat treated at three different heat treatments, namely homogenizing, calcining and simulation solubilization. The phases present were analyzed by X-ray diffraction, optical microscopy and microhardness testing

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study is to characterize the macrostructure and microstructure of Al - 1%Si alloy obtained in sand and metallic molds. Aluminium has good mechanical properties, but adding silicon, even in small quantities, can change the microstructure and improves mechanical behavior. Workpieces were castings in metallic and sand molds and one can see a difference in their cooling curve, macroscopic and microscopic structures. The sand mold casting has lower cooling rate and so its grains are larger. Due to the lower concentration of grain boundary, the hardness is lower compared to that found in metallic molds, which has smaller grains and a higher hardness. Therefore, it can be concluded that the cooling rate and alloying elements affect the final microstructure of the workpiece

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The waste, exaggerated and incorrect disposal of biomass are common practices in modern times where everything is disposable. However the growing concern with the nature and the environment compel man to give nobler destinations for these products through sustainability and recycling of waste. Banana peel is a residual biomass, which is not consumed. It generates tons of waste per week in São Paulo city. This trash is disposed in dumps and landfills, which could be reduced by using it as reinforcement in natural composites. The high density polyethylene (HDPE) is a polymer derived from the ethylene polymerization and is easily recycled. Which makes it a sustainable material. In the present work characteristics of the natural composite composed with banana peel and high-density polyethylene were studied. It was noted that removing the lignin present in the banana peel, the fiber introduces a significant improvement in thermal resistance. The preparation of composite was made with a ratio of 5% and 10% of reinforcement in comparison with polymeric matrix mass. Composites were thermally, mechanically and microscopically characterized. The addition of fiber in the polymer increased the mechanical strength of the composite. The fiber surface treatment with distilled water removed the amorphous material present in the fibers, improving significantly thermal stability and increasing crystallinity of the celullose. The addition of 5% fiber in mass to the polymer increased significantly the tensile strength and elasticity modulus for the composite. With 10% of fiber addiction there were also an improvement when compared with pure HDPE, but when compared with 5% composite the mechanical properties are slightly lower. This may be due to the fiber particle size, which are small and eventually become a hub of tension ... (Complete abstract click electronic access below)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to study the mechanical properties of micro alloyed steel API 5L X70, a material used to manufacture pipes for pipeline transportation lines for use in oil and gas, a study was made of toughness, tensile strength, impact strength, hardness and microstructure steel. To perform these various tests were made where they can acquire the characteristics of the material. Were performed at the Faculty of Engineering in Guaratinguetá in the Department of Materials and Technology and the tensile tests, Charpy impact test, metallography and hardness testing of material API 5L X70, all tests were done with the help of technical laboratories. With these data can be an analysis of the material about his tenacity, his toughness and fragility, its hardness, its yield strength and its maximum voltage. After being asked the analyzes discussed the results showed that the micro alloyed steel API 5L X70 steel is a very tenacious, it absorbs impact energy of 300 Joules though without a break for the full body of evidence showing its tenacity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need for development of new materials is a natural process in the companies’ technological point of view, seeking improvements in materials and processes. Specifically, among the materials, ceramic exhibit valuable properties, especially the covalent ceramics which have excellent properties for applications which requires the abrasion resistance, hardness, high temperatures, resistence, etc. being a material that has applications in several areas. Most studies are related to improvement of properties, specially fracture toughness that allows the expansion of its application. Among the most promising ceramic materials are silicon nitride (Si3N4) which has excellent properties. The goal of this work was the development and caracterization of Si3N4-based ceramics, doped with yttrium oxide (Y2O3), rar earth concentrate (CTR2O3) and cerium oxide (CeO2) in the same proportion for the evaluation of properties. The powders' mixtures were homogenized, dried and compressed under pressure uniaxial and isostatic. Sintering was carried out in 1850 ⁰C under pressure of 0,1MPa N2 for 1 h with a heating rate of 25 ⁰C / min and cooling in the furnace inertia. The characterizations were performed using Archimedes principle to relative density, weight loss by measuring before and after sintering, phase analysis by X-ray diffraction, microstructure by scanning electron microscope (SEM), hardness and fracture toughness by the method Vickers indentation. The results obtained showed relative density of 97-98%, Vickers hardness 17 to 19 GPa, fracture toughness 5.6 to 6.8 MPa.m1/2, with phases varying from α-SiAlON and β-Si3N4 depending the types of additives used. The results are promising for tribological applications and can be defined according to the types of additives to be used