920 resultados para Marketable foliage harvesting


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ammonia (NH3) volatilization can reduce the efficiency of urea applied to the surface of no-till (NT) soils. Thus, the objectives of this study were to evaluate the magnitude of NH3 losses from surface-applied urea and to determine if this loss justifies the urea incorporation in soil or its substitution for other N sources under the subtropical climatic conditions of South-Central region of Paraná State, Brazil. The experiment, performed over four harvesting seasons in a clayey Hapludox followed a randomized block design with four replicates. A single dose of N (150 kg ha-1) to V5 growth stage of corn cultivated under NT system was applied and seven treatments were evaluated, including surface-applied urea, ammonium sulfate, ammonium nitrate, urea with urease inhibitor, controlled-release N source, a liquid N source, incorporated urea, and a control treatment with no N application. Ammonia volatilization was evaluated for 20 days after N application using a semi-open static system. The average cumulative NH3 loss due to the superficial application of urea was low (12.5 % of the applied N) compared to the losses observed in warmer regions of Southeastern Brazil (greater than 50 %). The greatest NH3 losses were observed in dry years (up to 25.4 % of the applied N), and losses decreased exponentially as the amount of rainfall after N application increased. Incorporated urea and alternative N sources, with the exception of controlled-release N source, decreased NH3 volatilization in comparison with surface-applied urea. Urea incorporation is advantageous for the reduction of NH3 volatilization; however, other aspects as its low operating efficiency should be considered before this practice is adopted. In the South-Central region of Paraná, the low NH3 losses from the surface-applied urea in NT system due to wet springs and mild temperatures do not justify its replacement for other N sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This brochure includes colorful pictures of fall colors in Iowa. Also has information on why trees change colors and how to identify the species of tree through its leaves. Informs you on where and when to find the best viewing sites of fall foliage in Iowa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An understanding of the role of organic nitrogen (N) pools in the N supply of eucalyptus plantations is essential for the development of strategies that maximize the efficient use of N for this crop. This study aimed to evaluate the distribution of organic N pools in different compartments of the soil-plant system and their contributions to the N supply in eucalyptus plantations at different ages (1, 3, 5, and 13 years). Three models were used to estimate the contributions of organic pools: Model I considered N pools contained in the litterfall, N pools in the soil microbial biomass and available soil N (mineral N); Model II considered the N pools in the soil, potentially mineralizable N and the export of N through wood harvesting; and Model III (N balance) was defined as the difference between the initial soil N pool (0-10 cm) and the export of N, taking the application of N fertilizer into account. Model I showed that N pools could supply 27 - 70 % of the N demands of eucalyptus trees at different ages. Model II suggested that the soil N pool may be sufficient for 4 - 5 rotations of 5 years. According to the N balance, these N pools would be sufficient to meet the N demands of eucalyptus for more than 15 rotations of 5 years. The organic pools contribute with different levels of N and together are sufficient to meet the N demands of eucalyptus for several rotations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sugarcane is considered a Si-accumulating plant, but in Brazil, where several soil types are used for cultivation, there is little information about silicon (Si) fertilization. The objectives of this study were to evaluate the silicon availability, uptake and recovery index of Si from the applied silicate on tropical soils with and without silicate fertilization, in three crops. The experiments in pots (100 L) were performed with specific Si rates (0, 185, 370 and 555 kg ha-1 Si), three soils (Quartzipsamment-Q, 6 % clay; Rhodic Hapludox-RH, 22 % clay; and Rhodic Acrudox-RA, 68 % clay), with four replications. The silicon source was Ca-Mg silicate. The same Ca and Mg quantities were applied to all pots, with lime and/or MgCl2, when necessary. Sugarcane was harvested in the plant cane and first- and second-ratoon crops. The silicon rates increased soil Si availability and Si uptake by sugarcane and had a strong residual effect. The contents of soluble Si were reduced by harvesting and increased with silicate application in the following decreasing order: Q>RH>RA. The silicate rates promoted an increase in soluble Si-acetic acid at harvest for all crops and in all soils, except RA. The amounts of Si-CaCl2 were not influenced by silicate in the ratoon crops. The plant Si uptake increased according to the Si rates and was highest in RA at all harvests. The recovery index of applied Si (RI) of sugarcane increased over time, and was highest in RA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of trash from the mechanical harvest of green cane on sugarcane plantations promotes changes in the agricultural management, for example, in the mechanical cultural practices of ratoon cane in-between the rows and nitrogen (N) fertilization. The goal of this study was to evaluate the performance of sugarcane in different harvest systems, associated to the mechanical cultural practices in interrows and N rates. The study was carried out on a sugarcane plantation in Sales Oliveira, São Paulo, Brazil, with the sugarcane variety SP81-3250, on soil classified as Acrudox, in a randomized block design with split-split plots and four replications. The main treatments consisted of harvest systems (harvesting green cane or burnt cane), the secondary treatment consisted of the mechanical cultural practices in the interrows and the tertiary treatments were N rates (0, 30, 60, 90, 120 and 160 kg ha-1), using ammonium nitrate (33 % N) as N source. The harvest systems did not differ in sugarcane yield (tons of cane per hectare - TCH), but in burnt cane, the pol percent and total sugar recovery (TSR) were higher. This could be explained by the higher quantity of plant impurities in the harvested raw material in the system without burning, which reduces the processing quality. Mechanical cultural practices in the interrows after harvest had no effect on cane yield and sugar quality, indicating that this operation can be omitted in areas with mechanical harvesting. The application of N fertilizer at rates of 88 and 144 kg ha-1 N, respectively, increased stalk height and TCH quadratically to the highest values for these variables. For the sugar yield per hectare (in pol %), N fertilization induced a linear increase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the south-central region of Brazil, there is a trend toward reducing the sugarcane inter-harvest period and increasing traffic of heavy harvesting machinery on soil with high water content, which may intensify the compaction process. In this study, we assessed the structural changes of a distroferric Red Latosol (Oxisol) by monitoring soil water content as a function of the Least Limiting Water Range (LLWR) and quantified its effects on the crop yield and industrial quality of the first ratoon crop of sugarcane cultivars with different maturation cycles. Three cultivars (RB 83-5054, RB 84-5210 and RB 86-7515) were subjected to four levels of soil compaction brought about by a differing number of passes of a farm tractor (T0 = soil not trafficked, T2 = 2 passes, T10 = 10 passes, and T20 = 20 passes of the tractor in the same place) in a 3 × 4 factorial arrangement with three replications. The deleterious effects on the soil structure from the farm machinery traffic were limited to the surface layer (0-10 cm) of the inter-row area of the ratoon crop. The LLWR dropped to nearly zero after 20 tractor passes between the cane rows. We detected differences among the cultivars studied; cultivar RB 86-7515 stood out for its industrial processing quality, regardless of the level of soil compaction. Monitoring of soil moisture in the crop showed exposure to water stress conditions, although soil compaction did not affect the production variables of the sugarcane cultivars. We thus conclude that the absence of traffic on the plant row maintained suitable soil conditions for plant development and may have offset the harmful effects of soil compaction shown by the high values for bulk density between the rows of the sugarcane cultivars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modern agriculture techniques have a great impact on crops and soil quality, especially by the increased machinery traffic and weight. Several devices have been developed for determining soil properties in the field, aimed at managing compacted areas. Penetrometry is a widely used technique; however, there are several types of penetrometers, which have different action modes that can affect the soil resistance measurement. The objective of this study was to compare the functionality of two penetrometry methods (manual and automated mode) in the field identification of compacted, highly mechanized sugarcane areas, considering the influence of soil water volumetric content (θ) on soil penetration resistance (PR). Three sugarcane fields on a Rhodic Eutrudrox were chosen, under a sequence of harvest systems: one manual harvest (1ManH), one mechanized harvest (1MH) and three mechanized harvests (3MH). The different degrees of mechanization were associated to cumulative compaction processes. An electronic penetrometer was used on PR measurements, so that the rod was introduced into the soil by hand (Manual) and by an electromechanical motor (Auto). The θ was measured in the field with a soil moisture sensor. Results showed an effect of θ on PR measurements and that regression models must be used to correct data before comparing harvesting systems. The rod introduction modes resulted in different mean PR values, where the "Manual" overestimated PR compared to the "Auto" mode at low θ.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water infiltration in the soil is an important hydrological process that occurs at the interface of the soil-atmosphere system; thus, the soil management practice used has a strong influence on this process. The aim of this study was to evaluate water infiltration in the soil and compare equations for estimating the water infiltration rate in an Ultisol after harvesting common bean (Phaseolus vulgaris L.) under simulated rainfall. Field tests with a rainfall simulator were carried out in three soil management systems: minimum tillage (MT), conventional tillage (CT), and no tillage (NT). In NT, four levels of plant residue on the soil surface were evaluated: 0, 3, 6, and 9 t ha-1. The models of Kostiakov-Lewis, Horton, and Philip were used to estimate the infiltration rate. In the MT system, the final infiltration rate was 54 mm h-1, whereas in the CT and NT systems with up to 3 t ha-1 of plant residue on the soil surface, the rate was near 17 mm h-1. In addition, the results indicated that in the NT system the infiltration rate increased with plant residue coverage greater than 6 t ha-1, i.e., there was a positive correlation between plant cover and the water infiltration rate. The Horton model was the most suitable in representing the water infiltration process in the soil. Therefore, this model can be recommended for estimation of this variable regardless of the soil tillage system used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lime application recommendations for amendment of soil acidity in sugarcane were developed with a burnt cane harvesting system in mind. Sugarcane is now harvested in most areas without burning, and lime application for amendment of soil acidity in this system in which the sugarcane crop residue remains on the ground has been carried out without a scientific basis. The aim of this study was to evaluate the changes in soil acidity and stalk and sugar yield with different rates of surface application of calcium, magnesium silicate, and gypsum in ratoon cane. The experiment was performed after the 3rd harvest of the variety SP 81-3250 in a commercial green sugarcane plantation of the São Luiz Sugar Mill (47º 25' 33" W; 21º 59' 46" S), located in Pirassununga, São Paulo, in southeast Brazil. A factorial arrangement of four Ca-Mg silicate rates (0, 850, 1700, and 3400 kg ha-1) and two gypsum rates (0 and 1700 kg ha-1) was used in the experiment. After 12 months, the experiment was harvested and technological measurements of stalk and sugar yield were made. After harvest, soil samples were taken at the depths of 0.00-0.05, 0.05-0.10, 0.10-0.20, 0.20-0.40, and 0.40-0.60 m in all plots, and the following determinations were made: soil pH in CaCl2, organic matter, P, S, K, Ca, Mg, H+Al, Al, Si, and base saturation. The results show that the application of gypsum reduced the exchangeable Al3+ content and Al saturation below 0.05 m, and increased the Ca2+ concentration in the whole profile, the Mg2+ content below 0.10 m, K+ below 0.4 m, and base saturation below 0.20 m. This contributed to the effect of surface application of silicate on amendment of soil acidity reaching deeper layers. From the results of this study, it may be concluded that the silicate rate recommended may be too low, since the greater rates used in this experiment showed greater reduction in soil acidity, higher levels of nutrients at greater depths and an increase in stalk and sugar yield.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agricultural workers are among the professional groups most at risk of developing acute or chronic respiratory problems. Despite this fact, the etiology of these occupational diseases is poorly known, even in important sectors of agriculture such as the crops sector. A chronic exposure to multiple microorganisms, such as different bacterial and fungal species, has been proposed to be the cause of these multiple respiratory pathologies. Nevertheless, these microbial communities are still partially known. The aim of this study is to characterize all fungal species inhaled by the crops workers during different grain related activities and identify the abiotic and biotic factors that reduce the growth of the toxigenic, irritative or allergenic microbial species. Here, we are presenting the factors promoting the exposure to bioaerosols during different wheat related activities: harvesting, grain unload, baling straw, the cleaning of harvesters and silos. Total dust has been quantified following NIOSH 0500 method. Reactive endotoxin activity has been determined with Limulus Amebocyte Lysate Assay. All molds have been identified by the pyrosequencing of ITS2 amplicons generated from bioaerosol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT The impact of intensive management practices on the sustainability of forest production depends on maintenance of soil fertility. The contribution of forest residues and nutrient cycling in this process is critical. A 16-year-old stand of Pinus taeda in a Cambissolo Húmico Alumínico léptico (Humic Endo-lithic Dystrudept) in the south of Brazil was studied. A total of 10 trees were sampled distributed in five diameter classes according to diameter at breast height. The biomass of the needles, twigs, bark, wood, and roots was measured for each tree. In addition to plant biomass, accumulated plant litter was sampled, and soil samples were taken at three increments based on sampling depth: 0.00-0.20, 0.20-0.40, 0.40-0.60, 0.60-1.00, 1.00-1.40, 1.40-1.80, and 1.80-1.90 m. The quantity and concentration of nutrients, as well as mineralogical characteristics, were determined for each soil sample. Three scenarios of harvesting intensities were simulated: wood removal (A), wood and bark removal (B), and wood + bark + canopy removal (C). The sum of all biomass components was 313 Mg ha-1.The stocks of nutrients in the trees decreased in the order N>Ca>K>S>Mg>P. The mineralogy of the Cambissolo Húmico Alumínico léptico showed the predominance of quartz sand and small traces of vermiculite in the silt fraction. Clay is the main fraction that contributes to soil weathering, due to the transformation of illite-vermiculite, releasing K. The depletion of nutrients from the soil biomass was in the order: P>S>N>K>Mg>Ca. Phosphorus and S were the most limiting in scenario A due to their low stock in the soil. In scenario B, the number of forest rotations was limited by N, K, and S. Scenario C showed the greatest reduction in productivity, allowing only two rotations before P limitation. It is therefore apparent that there may be a difference of up to 30 years in the capacity of the soil to support a scenario such as A, with a low nutrient removal, compared to scenario C, with a high nutrient removal. Hence, the effect of different harvesting intensities on nutrient availability may jeopardize the sustainability of P. taeda in the short-term.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT The use of cover crops has recently increased and represents an essential practice for the sustainability of no-tillage systems in the Cerrado region. However, there is little information on the effects of nitrogen fertilization and cover crop use on nitrogen soil fractions. This study assessed changes in the N forms in soil cropped to cover crops prior to corn growing. The experiment consisted of a randomized complete block design arranged in split-plots with three replications. Cover crops were tested in the plots, and the N topdressing fertilization was assessed in the subplots. The following cover species were planted in succession to corn for eight years: Urochloa ruziziensis, Canavalia brasiliensis M. ex Benth, Cajanus cajan (L.) Millsp, and Sorghum bicolor (L.) Moench. After corn harvesting, the soil was sampled at depths of 0.00-0.10 and 0.10-0.20 m. The cover crops showed different effects at different soil depths. The soil cultivated with U. ruziziensis showed higher contents of total-N and particulate-N than the soil cultivated with C. cajan. Particulate-N was the most sensitive to changes in the soil management among the fractions of N assessed. The soil under N topdressing showed a lower content of available-N in the 0.10-0.20 m layer, which may be caused by the season in which the sampling was conducted or the greater uptake of the available-N by corn.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water tanks offer from many centuries ago solutions in South India for several problems related with water scarcity. They are a traditional water harvesting system wide spread in this territory, allowing a potential decentralized and participatory management of the local population on their own resources. Although water tanks¿ main function is irrigation, they have many other uses, functions and natural resources associated, involving stakeholders in the villages apart from those farmers making use of the irrigation. Water tanks provide a variety of landscapes and biodiversity that creates a valuable heterogeneous territory. The complexity of such an ecosystem should be managed with an integral perspective, considering all the elements involved and their relations, and understanding that water tanks are not just water deposits. This multidisciplinary study tries to demonstrate the idea of water tanks as ecosystems, describing and analyzing deeply and in an unprecedentedly way the functions, uses, natural resources and stakeholders. The research also focuses in the assessment of the ecosystemic perception of the local population of some villages in Tamil Nadu, employing diverse anthropological methodology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is divided into three volumes: Volume I: Strain-Based Damage Detection; Volume II: Acceleration-Based Damage Detection; Volume III: Wireless Bridge Monitoring Hardware. Volume I: In this work, a previously-developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The statistical damage-detection tool, control-chart-based damage-detection methodologies, were further investigated and advanced. For the validation of the damage-detection approaches, strain data were obtained from a sacrificial specimen attached to the previously-utilized US 30 Bridge over the South Skunk River (in Ames, Iowa), which had simulated damage,. To provide for an enhanced ability to detect changes in the behavior of the structural system, various control chart rules were evaluated. False indications and true indications were studied to compare the damage detection ability in regard to each methodology and each control chart rule. An autonomous software program called Bridge Engineering Center Assessment Software (BECAS) was developed to control all aspects of the damage detection processes. BECAS requires no user intervention after initial configuration and training. Volume II: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The objective of this part of the project was to validate/integrate a vibration-based damage-detection algorithm with the strain-based methodology formulated by the Iowa State University Bridge Engineering Center. This report volume (Volume II) presents the use of vibration-based damage-detection approaches as local methods to quantify damage at critical areas in structures. Acceleration data were collected and analyzed to evaluate the relationships between sensors and with changes in environmental conditions. A sacrificial specimen was investigated to verify the damage-detection capabilities and this volume presents a transmissibility concept and damage-detection algorithm that show potential to sense local changes in the dynamic stiffness between points across a joint of a real structure. The validation and integration of the vibration-based and strain-based damage-detection methodologies will add significant value to Iowa’s current and future bridge maintenance, planning, and management Volume III: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. This report volume (Volume III) summarizes the energy harvesting techniques and prototype development for a bridge monitoring system that uses wireless sensors. The wireless sensor nodes are used to collect strain measurements at critical locations on a bridge. The bridge monitoring hardware system consists of a base station and multiple self-powered wireless sensor nodes. The base station is responsible for the synchronization of data sampling on all nodes and data aggregation. Each wireless sensor node include a sensing element, a processing and wireless communication module, and an energy harvesting module. The hardware prototype for a wireless bridge monitoring system was developed and tested on the US 30 Bridge over the South Skunk River in Ames, Iowa. The functions and performance of the developed system, including strain data, energy harvesting capacity, and wireless transmission quality, were studied and are covered in this volume.