959 resultados para Mammary Epithelial Cells


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cancer is a multistep process that begins with the transformation of normal epithelial cells and continues with tumor growth, stromal invasion and metastasis. The remodeling of the peritumoral environment is decisive for the onset of tumor invasiveness. This event is dependent on epithelial–stromal interactions, degradation of extracellular matrix components and reorganization of fibrillar components. Our research group has studied in a new proposed rodent model the participation of cellular and molecular components in the prostate microenvironment that contributes to cancer progression. Our group adopted the gerbil Meriones unguiculatus as an alternative experimental model for prostate cancer study. This model has presented significant responses to hormonal treatments and to development of spontaneous and induced neoplasias. The data obtained indicate reorganization of type I collagen fibers and reticular fibers, synthesis of new components such as tenascin and proteoglycans, degradation of basement membrane components and elastic fibers and increased expression of metalloproteinases. Fibroblasts that border the region, apparently participate in the stromal reaction. The roles of each of these events, as well as some signaling molecules, participants of neoplastic progression and factors that promote genetic reprogramming during epithelial–stromal transition are also discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lung cancer is a leading cause of death in developed countries. Although smoking cessation is a primary strategy for preventing lung cancer, former smokers remain at high risk of cancer. Accordingly, there is a need to increase the efficacy of lung cancer prevention. Poor bioavailability is the main factor limiting the efficacy of chemopreventive agents. The aim of this study was to increase the efficacy of cancer chemopreventive agents by using lipid nanoparticles (NPs) as a carrier. This study evaluated the ability of lipid NPs to modify the pharmacodynamics of chemopreventive agents including N-acetyl-L-cysteine, phenethyl isothiocyanate and resveratrol (RES). The chemopreventive efficacy of these drugs was determined by evaluating their abilities to counteract cytotoxic damage (DNA fragmentation) induced by cigarette smoke condensate (CSC) and to activate protective apoptosis (annexin-V cytofluorimetric staining) in bronchial epithelial cells both in vitro and in ex vivo experiment in mice. NPs decreased the toxicity of RES and increased its ability to counteract CSC cytotoxicity. NPs significantly increased the ability of phenethyl isothiocyanate to attenuate CSC-induced DNA fragmentation at the highest tested dose. In contrast, this potentiating effect was observed at all tested doses of RES, NPs dramatically increasing RES-induced apoptosis in CSC-treated cells. These results provide evidence that NPs are highly effective at increasing the efficacy of lipophilic drugs (RES) but are not effective towards hydrophilic agents (N-acetyl-L-cysteine), which already possess remarkable bioavailability. Intermediate effects were observed for phenethyl isothiocyanate. These findings are relevant to the identification of cancer chemopreventive agents that would benefit from lipid NP delivery.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The epithelial-mesenchymal transition (EMT) is an essential process in the tumor progression and metastasis. In human prostate carcinoma (PCa), the upregulation of cytokeratin and E-cadherin and down-regulation of vimentin have been associated with aggressive phenotype and poor prognosis. Due to the importance of canine cancer model it was evaluated the immunoexpression of AE1/AE3, E-cadherin and vimentin in canine prostatic lesions. Patients and Methods: A total of 75 prostatic tissues formalin-fixed paraffin embedded from dogs was selected: 10 normal prostatic tissues, 20 benign prostatic hyperplasia (BPH), 25 proliferative inflammatory atrophy (PIA) and 20 PCa. AE1/AE3 was detected with a monoclonal antibody (Invitrogen, 180132) at a 1:300 dilution, applied for 45 min at room temperature (RT). The antibody against Vimentin (V9, Invitrogen) and E-cadherin (NCH-38, Dako cytomatiomn) were monoclonal mouse antibodies, used at a 1:300 and 1:200, respectively, for 45 min at RT. The immunolabelling was performed by a polymer method (Histofine, Nichirei Biosciences,). A negative control was performed for all antibodies by omitting the primary antibody and substituting with Tris-buffered saline. The percentage of C-MYC, E-cadherin, and p63- positive cells per lesion was evaluated according to Prowatke et al. (2007). The samples were scored separately according to staining intensity and graded semi-quantitatively as negative, weakly positive, moderately positive, and strongly positive. The score was done in one 400 magnification field, considering only the lesion, since this was done in a TMA core of 1 mm. For statistical analyses, the immunostaining classifications were reduced to two categories: negative and positive. The negative category included negative and weakly positive staining. Chi-square or Fisher exact test was used to determine the association between the categorical variables. Results: All prostatic normal and BPH tissue were positive for cytokeratin, E-cadherin and negative for vimentin. Similarly, all PIA samples were positive for AE1/AE3. From those samples, 48% (12/25) were also positive for vimentin. 55% of PCa (11/25) was positive for vimentin and among these samples 75% (6/11) was also positive for AE1/AE3 and 45% (5/11) was negative for AE1/AE3. PIA and PCa presented a higher number of vimentin positive cells when compared with normal tissue (p=0.032). E-cadherin expression had no statistical difference among diagnosis groups, but we found a higher number of positive cases, with more than 51% of positive immunostaining in BPH and PIA (81.25% and 78.60% of the cases, respectively) than in PCa (55.55%). Conclusion: The carcinogenesis process regarding prostatic epithelial cells in dogs showed higher vimentin protein expression associated with concomitant loss of the cytokeratin and E-cadherin, similar in humans.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objectives: Limbal stem cells (LSC) are self-renewing, highly proliferative cells in vitro, which express a set of specific markers and in vivo have the capacity to reconstruct the entire corneal epithelium in cases of ocular surface injury. Currently, LSC transplantation is a commonly used procedure in patients with either uni- or bilateral total limbal stem cells deficiency (TLSCD). Although LSC transplantation holds great promise for patients, several problems need to be overcome. In order to find an alternative source of cells that can partially substitute LSC in cornea epithelium reconstruction, we aimed at investigating whether human immature dental pulp stem cells (hIDPSC) would present similar key characteristics as LSC and whether they could be used for corneal surface reconstruction in a rabbit TLSCD model. Materials: We used hIDPSC, which co-express mesenchymal and embryonic stem cell markers and present the capacity to differentiate into derivative cells of the three germinal layers. TLSCD was induced by chemical burn in one eye of rabbits. After 30 days, the opaque tissue formed was removed by superficial keratectomy. Experimental group received undifferentiated hIDPSC, while control group only received amniotic membrane (AM). Both groups were sacrificed after 3 months. Results and conclusions: We have demonstrated, using immunohistochemistry and reverse transcription-polymerase chain reaction, that hIDPSCs express markers in common with LSC, such as ABCG2, integrin beta 1, vimentin, p63, connexin 43 and cytokeratins 3/12. They were also capable of reconstructing the eye surface after induction of unilateral TLSCD in rabbits, as shown by morphological and immunohistochemical analysis using human-specific antibodies against limbal and corneal epithelium. Our data suggest that hIDPSCs share similar characteristics with LSC and might be used as a potential alternative source of cells for corneal reconstruction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Outer mitochondrial membrane (OMM) rupture was first noted in isolated mitochondria in which the inner mitochondrial membrane (IMM) had lost its selective permeability. This phenomenon referred to as mitochondrial permeability transition (MPT) refers to a permeabilized inner membrane that originates a large swelling in the mitochondrial matrix, which distends the outer membrane until it ruptures. Here, we have expanded previous electron microscopic observations that in apoptotic cells, OMM rupture is not caused by a membrane stretching promoted by a markedly swollen matrix. It is shown that the widths of the ruptured regions of the OMM vary from 6 to 250 nm. Independent of the perforation size, herniation of the mitochondrial matrix appeared to have resulted in pushing the IMM through the perforation. A large, long focal herniation of the mitochondrial matrix, covered with the IMM, was associated with a rupture of the OMM that was as small as 6 nm. Contextually, the collapse of the selective permeability of the IMM may precede or follow the release of the mitochondrial proteins of the intermembrane space into the cytoplasm. When the MPT is a late event, exit of the intermembrane space proteins to the cytoplasm is unimpeded and occurs through channels that transverse the outer membrane, because so far, the inner membrane is impermeable. No channel within the outer membrane can expose to the cytoplasm a permeable inner membrane, because it would serve as a conduit for local herniation of the mitochondrial matrix. Anat Rec, 2012. (c) 2012 Wiley Periodicals, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objetivou-se com este trabalho avaliar os efeitos de uma dieta de alto nível de energia e proteína combinada com a aplicação de bST no perfil de expressão dos genes da leptina e de seu receptor Ob-Rb no parênquima mamário de novilhas leiteiras. Foram utilizadas amostras de parênquima mamário de 32 novilhas holandesas distribuídas aleatoriamente em quatro tratamentos (n=8): dieta com alto ou baixo teor de energia e proteína combinada ou não com a aplicação de bST. O delineamento utilizado foi em blocos casualizados com arranjo de tratamentos em esquema fatorial 2 × 2. A extração do RNA total das amostras de tecido foi feita e o nível de expressão gênica foi analisado por qRT-PCR utilizando-se o gene da glicuronidase β como controle, pelo método 2-ΔΔCt. Animais que receberam a dieta com alto conteúdo de energia e proteína apresentaram maior expressão de mRNA de leptina, com aumento de 56%, e menor expressão de mRNA do receptor Ob-Rb, com redução de 18%. Por outro lado, a aplicação de bST resultou em diminuição da expressão do mRNA de leptina e do receptor Ob-Rb em 74% e 23%, respectivamente. Não houve interação entre dieta e aplicação de bST. O aumento na expressão de leptina pode explicar, ao menos em parte, os efeitos negativos da dieta de alta energia e proteína, oferecida no período pré-púbere, sobre a produção de leite de novilhas leiteiras.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Endometriosis is a multifactorial gynecological disease characterized by the presence of functional endometrium-like tissue in ectopic sites. Several studies have focused on elucidating the immunological, endocrine, environmental and genetic factors involved in endometriosis. However, its pathogenesis is still unclear. High-resolution comparative genomic hybridization was applied to screen for genomic imbalances in laser microdissected stromal and epithelial cells from 20 endometriotic lesions and three samples of eutopic endometrium derived from eight patients. The expression of seven stemness-related markers (CD9, CD13, CD24, CD34, CD133, CD117/c-Kit and Oct-4) in endometrial tissue samples was evaluated by immunohistochemistry. Samples of eutopic endometrium showed normal genomic profiles. In ectopic tissues, an average of 68 genomic imbalances was detected per sample. DNA losses were more frequently detected and involved mainly 3p, 5q, 7p, 9p, 11q, 16q, 18q and 19q. Many of the genomic imbalances detected were common to endometriotic stroma and epithelia and also among different endometriotic sites from the same patient. These findings suggested a clonal origin of the endometriotic cells and the putative involvement of stem cells. Positive immunostaining for CD9, CD34, c-Kit and Oct-4 markers was detected in isolated epithelial and/or stromal cells in eutopic and ectopic endometrium in the majority of cases. The presence of shared genomic alterations in stromal and epithelial cells from different anatomical sites of the same patient and the expression of stemness-related markers suggested that endometriosis arises as a clonal proliferation with the putative involvement of stem cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mast cell tumors (MCTs) are the most frequent round cell tumors in dogs and comprise approximately 21% of all canine cutaneous tumors. MCTs are highly invasive and metastatic corresponding to the histological grade. E-cadherin is an adhesion molecule expressed in epithelial cells and although it is an epithelial cellular marker, studies have shown expression of E-cadherin in canine round cell tumors. To better characterize the expression pattern of E-cadherin in several different histological grades of MCTs in dogs, the expression and localization of the adhesion molecule was investigated using immunohistochemistry. For this purpose, 18 cutaneous MCTs were classified into three histological grades, 1, 2 or 3. Clinical history and follow-up data were available for all of the dogs. Cytoplasmic and nuclear expressions of E-cadherin in all three types of tumors were verified by immunostaining using two different antibodies. There was decreased E-cadherin expression in the more aggressive MCTs (Grade 3), suggesting an association between E-cadherin and tumor aggressiveness. Additionally, the loss of E-cadherin expression in either the cytoplasm or nucleus in more aggressive and undifferentiated tumor types confirmed the importance of cellular adhesion in tumor behavior. (C) 2012 Published by Elsevier Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background Vitamin D transcriptional effects were linked to tumor growth control, however, the hormone targets were determined in cell cultures exposed to supra physiological concentrations of 1,25(OH)2D3 (50-100nM). Our aim was to evaluate the transcriptional effects of 1,25(OH)2D3 in a more physiological model of breast cancer, consisting of fresh tumor slices exposed to 1,25(OH)2D3 at concentrations that can be attained in vivo. Methods Tumor samples from post-menopausal breast cancer patients were sliced and cultured for 24 hours with or without 1,25(OH)2D3 0.5nM or 100nM. Gene expression was analyzed by microarray (SAM paired analysis, FDR≤0.1) or RT-qPCR (p≤0.05, Friedman/Wilcoxon test). Expression of candidate genes was then evaluated in mammary epithelial/breast cancer lineages and cancer associated fibroblasts (CAFs), exposed or not to 1,25(OH)2D3 0.5nM, using RT-qPCR, western blot or immunocytochemistry. Results 1,25(OH)2D3 0.5nM or 100nM effects were evaluated in five tumor samples by microarray and seven and 136 genes, respectively, were up-regulated. There was an enrichment of genes containing transcription factor binding sites for the vitamin D receptor (VDR) in samples exposed to 1,25(OH)2D3 near physiological concentration. Genes up-modulated by both 1,25(OH)2D3 concentrations were CYP24A1, DPP4, CA2, EFTUD1, TKTL1, KCNK3. Expression of candidate genes was subsequently evaluated in another 16 samples by RT-qPCR and up-regulation of CYP24A1, DPP4 and CA2 by 1,25(OH)2D3 was confirmed. To evaluate whether the transcripitonal targets of 1,25(OH)2D3 0.5nM were restricted to the epithelial or stromal compartments, gene expression was examined in HB4A, C5.4, SKBR3, MDA-MB231, MCF-7 lineages and CAFs, using RT-qPCR. In epithelial cells, there was a clear induction of CYP24A1, CA2, CD14 and IL1RL1. In fibroblasts, in addition to CYP24A1 induction, there was a trend towards up-regulation of CA2, IL1RL1, and DPP4. A higher protein expression of CD14 in epithelial cells and CA2 and DPP4 in CAFs exposed to 1,25(OH)2D3 0.5nM was detected. Conclusions In breast cancer specimens a short period of 1,25(OH)2D3 exposure at near physiological concentration modestly activates the hormone transcriptional pathway. Induction of CYP24A1, CA2, DPP4, IL1RL1 expression appears to reflect 1,25(OH)2D3 effects in epithelial as well as stromal cells, however, induction of CD14 expression is likely restricted to the epithelial compartment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As the elastic response of cell membranes to mechanical stimuli plays a key role in various cellular processes, novel biophysical strategies to quantify the elasticity of native membranes under physiological conditions at a nanometer scale are gaining interest. In order to investigate the elastic response of apical membranes, elasticity maps of native membrane sheets, isolated from MDCK II (Madine Darby Canine kidney strain II) epithelial cells, were recorded by local indentation with an Atomic Force Microscope (AFM). To exclude the underlying substrate effect on membrane indentation, a highly ordered gold coated porous array with a pore diameter of 1.2 μm was used to support apical membranes. Overlays of fluorescence and AFM images show that intact apical membrane sheets are attached to poly-D-lysine coated porous substrate. Force indentation measurements reveal an extremely soft elastic membrane response if it is indented at the center of the pore in comparison to a hard repulsion on the adjacent rim used to define the exact contact point. A linear dependency of force versus indentation (-dF/dh) up to 100 nm penetration depth enabled us to define an apparent membrane spring constant (kapp) as the slope of a linear fit with a stiffness value of for native apical membrane in PBS. A correlation between fluorescence intensity and kapp is also reported. Time dependent hysteresis observed with native membranes is explained by a viscoelastic solid model of a spring connected to a Kelvin-Voight solid with a time constant of 0.04 s. No hysteresis was reported with chemically fixated membranes. A combined linear and non linear elastic response is suggested to relate the experimental data of force indentation curves to the elastic modulus and the membrane thickness. Membrane bending is the dominant contributor to linear elastic indentation at low loads, whereas stretching is the dominant contributor for non linear elastic response at higher loads. The membrane elastic response was controlled either by stiffening with chemical fixatives or by softening with F-actin disrupters. Overall, the presented setup is ideally suitable to study the interactions of the apical membrane with the underlying cytoskeleton by means of force indentation elasticity maps combined with fluorescence imaging.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The physicochemical properties of nanoparticles make them suitable for biomedical applications. Due to their ‘straight-forward’ synthesis, their known biocompatibility, their strong optical properties, their ability for targeted drug delivery and their uptake potential into cells gold nanoparticles are highly interesting for biomedical applications. In particular, the therapy of brain diseases (neurodegenerative diseases, ischemic stroke) is a challenge for contemporary medicine and gold nanoparticles are currently being studied in the hope of improving drug delivery to the brain.rnIn this thesis three major conclusions from the generated data are emphasized.rn1. After improvement of the isolation protocol and culture conditions, the formation of a monolayer of porcine brain endothelial cells on transwell filters lead to a reproducible and tight in vitro monoculture which exhibited in vivo blood brain barrier (BBB) characteristics. The transport of nanoparticles across the barrier was studied using this model.rn2. Although gold nanoparticles are known to be relatively bioinert, contaminants of the nanoparticle synthesis (i.e. CTAB or sodium citrate) increased the cytotoxicity of gold nanoparticles, as shown by various publications. The results presented in this thesis demonstrate that contaminants of the nanoparticle synthesis such as sodium citrate increased the cytotoxicity of the gold nanoparticles in endothelial cells but in a more dramatic manner in epithelial cells. Considering the increased uptake of these particles by epithelial cells compared to endothelial cells it was demonstrated that the observed decrease of cell viability appeared to be related to the amount of internalized gold nanoparticles in combination with the presence of the contaminant.rn3. Systematically synthesized gold nanoparticles of different sizes with a variety of surface modifications (different chemical groups and net charges) were investigated for their uptake behaviour and functional impairment of endothelial cells, one of the major cell types making up the BBB. The targeting of these different nanoparticles to endothelial cells from different parts of the body was investigated in a comparative study of human microvascular dermal and cerebral endothelial cells. In these experiments it was demonstrated that different properties of the nanoparticles resulted in a variety of uptake patterns into cells. Positively charged gold nanoparticles were internalized in high amounts, while PEGylated nanoparticles were not taken up by both cell types. Differences in the uptake behavior were also demonstrated for neutrally charged particles of different sizes, coated with hydroxypropylamine or glucosamine. Endothelial cells of the brain specifically internalized 35nm neutrally charged hydroxypropylamine-coated gold nanoparticles in larger amounts compared to dermal microvascular endothelial cells, indicating a "targeting" for brain endothelial cells. Co-localization studies with flotillin-1 and flotillin-2 showed that the gold nanoparticles were internalized by endocytotic pathways. Furthermore, these nanoparticles exhibited transcytosis across the endothelial cell barrier in an in vitro BBB model generated with primary porcine brain endothelial cells (1.). In conclusion, gold nanoparticles with different sizes and surface characteristics showed different uptake patterns in dermal and cerebral endothelial cells. In addition, gold nanoparticles with a specific size and defined surface modification were able to cross the blood-brain barrier in a porcine in vitro model and may thus be useful for controlled delivery of drugs to the brain.