960 resultados para MYOSTATIN BLOCKADE
Resumo:
Sequentially along B cell differentiation, the different classes of membrane Ig heavy chains associate with the Ig alpha/Ig beta heterodimer within the B cell receptor (BCR). Whether each Ig class conveys specific signals adapted to the corresponding differentiation stage remains debated. We investigated the impact of the forced expression of an IgA-class receptor throughout murine B cell differentiation by knocking in the human C alpha Ig gene in place of the S mu region. Despite expression of a functional BCR, homozygous mutant mice showed a partial developmental blockade at the pro-B/pre-BI and large pre-BII cell stages, with decreased numbers of small pre-BII cells. Beyond this stage, peripheral B cell compartments of reduced size developed and allowed specific antibody responses, whereas mature cells showed constitutive activation and a strong commitment to plasma cell differentiation. Secreted IgA correctly assembled into polymers, associated with the murine J chain, and was transported into secretions. In heterozygous mutants, cells expressing the IgA allele competed poorly with those expressing IgM from the wild-type allele and were almost undetectable among peripheral B lymphocytes, notably in gut-associated lymphoid tissues. Our data indicate that the IgM BCR is more efficient in driving early B cell education and in mucosal site targeting, whereas the IgA BCR appears particularly suited to promoting activation and differentiation of effector plasma cells.
Resumo:
The cytoskeleton is essential for the structural organization of neurons and is influenced during development by excitatory stimuli such as activation of glutamate receptors. In particular, NMDA receptors are known to modulate the function of several cytoskeletal proteins and to influence cell morphology, but the underlying molecular and cellular mechanisms remain unclear. Here, we characterized the neurofilament subunit NF-M in cultures of developing mouse cortical neurons chronically exposed to NMDA receptor antagonists. Western blots analysis showed that treatment of cortical neurons with MK801 or AP5 shifted the size of NF-M towards higher molecular weights. Dephosphorylation assay revealed that this increased size of NF-M observed after chronic exposure to NMDA receptor antagonists was due to phosphorylation. Neurons treated with cyclosporin, an inhibitor of the Ca(2+)-dependent phosphatase calcineurin, also showed increased levels of phosphorylated NF-M. Moreover, analysis of neurofilament stability revealed that the phosphorylation of NF-M, resulting from NMDA receptor inhibition, enhanced the solubility of NF-M. Finally, cortical neurons cultured in the presence of the NMDA receptor antagonists MK801 and AP5 grew longer neurites. Together, these data indicate that a blockade of NMDA receptors during development of cortical neurons increases the phosphorylation state and the solubility of NF-M, thereby favoring neurite outgrowth. This also underlines that dynamics of the neurofilament and microtubule cytoskeleton is fundamental for growth processes.
Resumo:
Cellular directional migration in an electric field (galvanotaxis) is one of the mechanisms guiding cell movement in embryogenesis and in skin epidermal repair. The epithelial sodium channel (ENaC), in addition to its function of regulating sodium transport in kidney, has recently been found to modulate cell locomotory speed. Here we tested whether ENaC has an additional function of mediating the directional migration of galvanotaxis in keratinocytes. Genetic depletion of ENaC completely blocks only galvanotaxis and does not decrease migration speed. Overexpression of ENaC is sufficient to drive galvanotaxis in otherwise unresponsive cells. Pharmacologic blockade or maintenance of the open state of ENaC also decreases or increases, respectively, galvanotaxis, suggesting that the channel open state is responsible for the response. Stable lamellipodial extensions formed at the cathodal sides of wild-type cells at the start of galvanotaxis; these were absent in the ENaC knockout keratinocytes, suggesting that ENaC mediates galvanotaxis by generating stable lamellipodia that steer cell migration. We provide evidence that ENaC is required for directional migration of keratinocytes in an electric field, supporting a role for ENaC in skin wound healing.
Resumo:
In addition to their CD1d-restricted T cell receptor (TCR), natural killer T (NKT) cells express various receptors normally associated with NK cells thought to act, in part, as modulators of TCR signaling. Immunoreceptor-tyrosine activation (ITAM) and inhibition (ITIM) motifs associated with NK receptors may augment or attenuate perceived TCR signals respectively, potentially influencing NKT cell development and function. ITIM-containing Ly49 family receptors expressed by NKT cells are proposed to play a role in their development and function. We have produced mice transgenic for the ITAM-associated Ly49D and ITIM-containing Ly49A receptors and their common ligand H2-Dd to determine the importance of these signaling interplays in NKT cell development. Ly49D/H2-Dd transgenic mice had selectively and severely reduced numbers of thymic and peripheral NKT cells, whereas both ligand and Ly49D transgenics had normal numbers of NKT cells. CD1d tetramer staining revealed a blockade of NKT cell development at an early precursor stage. Coexpression of a Ly49A transgene partially rescued NKT cell development in Ly49D/H2-Dd transgenics, presumably due to attenuation of ITAM signaling. Thus, Ly49D-induced ITAM signaling is incompatible with the early development of cells expressing semi-invariant CD1d-restricted TCRs and appropriately harmonized ITIM-ITAM signaling is likely to play an important role in the developmental program of NKT cells.
Resumo:
The recruitment of dendritic cells to sites of infections and their migration to lymph nodes is fundamental for antigen processing and presentation to T cells. In the present study, we showed that antibody blockade of junctional adhesion molecule C (JAM-C) on endothelial cells removed JAM-C away from junctions and increased vascular permeability after L. major infection. This has multiple consequences on the output of the immune response. In resistant C57BL/6 and susceptible BALB/c mice, we found higher numbers of innate immune cells migrating from blood to the site of infection. The subsequent migration of dendritic cells (DCs) from the skin to the draining lymph node was also improved, thereby boosting the induction of the adaptive immune response. In C57BL/6 mice, JAM-C blockade after L. major injection led to an enhanced IFN-γ dominated T helper 1 (Th1) response with reduced skin lesions and parasite burden. Conversely, anti JAM-C treatment increased the IL-4-driven T helper 2 (Th2) response in BALB/c mice with disease exacerbation. Overall, our results show that JAM-C blockade can finely-tune the innate cell migration and accelerate the consequent immune response to L. major without changing the type of the T helper cell response.
Resumo:
BACKGROUND: Neoadjuvant trials conducted using a double HER2 blockade with lapatinib and trastuzumab, combined with different paclitaxel-containing chemotherapy regimens, have shown high pathological complete response (pCR) rates, but at the cost of important toxicity. We hypothesised that this toxicity might be due to a specific interaction between paclitaxel and lapatinib. This trial assesses the toxicity and activity of the combination of docetaxel with lapatinib and trastuzumab. PATIENTS AND METHODS: Patients with stage IIA to IIIC HER2-positive breast cancer received six cycles of chemotherapy (three cycles of docetaxel followed by three cycles of fluorouracil, epirubicin, cyclophosphamide). They were randomised 1 : 1 : 1 to receive during the first three cycles either lapatinib (1000 mg orally daily), trastuzumab (4 mg/kg loading dose followed by 2 mg/kg weekly), or trastuzumab + lapatinib at the same dose. The primary end point was pCR rate defined as ypT0/is. Secondary end points included safety and toxicity. pCR rate defined as ypT0/is ypN0 was assessed as an exploratory analysis. In June 2012, arm A was closed for futility based on the results from other studies. RESULTS: From October 2010 to January 2013, 128 patients were included in 14 centres. The percentage of the 122 assessable patients with pCR in the breast, and pCR in the breast and nodes, was numerically highest in the lapatinib + trastuzumab group (60% and 56%, respectively), intermediate in the trastuzumab group (52% and 52%), and lowest in the lapatinib group (46% and 36%). Frequency (%) of the most common grade 3-4 toxicities in the lapatinib /trastuzumab/lapatinib + trastuzumab arms were: febrile neutropenia 23/15/10, diarrhoea 9/2/18, infection (other) 9/4/8, and hepatic toxicity 0/2/8. CONCLUSIONS: This study demonstrates a numerically modest pCR rate increase with double anti-HER2 blockade plus chemotherapy, but suggests that the use of docetaxel rather than paclitaxel may not reduce toxicity. CLINICALTRIALSGOV: NCT00450892.
Resumo:
BACKGROUND: This study was undertaken to determine whether use of the direct renin inhibitor aliskiren would reduce cardiovascular and renal events in patients with type 2 diabetes and chronic kidney disease, cardiovascular disease, or both. METHODS: In a double-blind fashion, we randomly assigned 8561 patients to aliskiren (300 mg daily) or placebo as an adjunct to an angiotensin-converting-enzyme inhibitor or an angiotensin-receptor blocker. The primary end point was a composite of the time to cardiovascular death or a first occurrence of cardiac arrest with resuscitation; nonfatal myocardial infarction; nonfatal stroke; unplanned hospitalization for heart failure; end-stage renal disease, death attributable to kidney failure, or the need for renal-replacement therapy with no dialysis or transplantation available or initiated; or doubling of the baseline serum creatinine level. RESULTS: The trial was stopped prematurely after the second interim efficacy analysis. After a median follow-up of 32.9 months, the primary end point had occurred in 783 patients (18.3%) assigned to aliskiren as compared with 732 (17.1%) assigned to placebo (hazard ratio, 1.08; 95% confidence interval [CI], 0.98 to 1.20; P=0.12). Effects on secondary renal end points were similar. Systolic and diastolic blood pressures were lower with aliskiren (between-group differences, 1.3 and 0.6 mm Hg, respectively) and the mean reduction in the urinary albumin-to-creatinine ratio was greater (between-group difference, 14 percentage points; 95% CI, 11 to 17). The proportion of patients with hyperkalemia (serum potassium level, ≥6 mmol per liter) was significantly higher in the aliskiren group than in the placebo group (11.2% vs. 7.2%), as was the proportion with reported hypotension (12.1% vs. 8.3%) (P<0.001 for both comparisons). CONCLUSIONS: The addition of aliskiren to standard therapy with renin-angiotensin system blockade in patients with type 2 diabetes who are at high risk for cardiovascular and renal events is not supported by these data and may even be harmful. (Funded by Novartis; ALTITUDE ClinicalTrials.gov number, NCT00549757.).
Resumo:
Substantial evidence supports a role for myocyte enhancer factor 2 (MEF2)-mediated transcription in neuronal survival, differentiation and synaptic function. In developing neurons, it has been shown that MEF2-dependent transcription is regulated by neurotrophins. Despite these observations, little is known about the cellular mechanisms by which neurotrophins activate MEF2 transcriptional activity. In this study, we examined the role of salt-inducible kinase 1 (SIK1), a member of the AMP-activated protein kinase (AMPK) family, in the regulation of MEF2-mediated transcription by the neurotrophin brain-derived neurotrophic factor (BDNF). We show that BDNF increases the expression of SIK1 in primary cultures of rat cortical neurons through the extracellular signal-regulated kinase 1/2 (ERK1/2)-signaling pathway. In addition to inducing SIK1 expression, BDNF triggers the phosphorylation of SIK1 at Thr182 and its translocation from the cytoplasm to the nucleus of cortical neurons. The effects of BDNF on the expression, phosphorylation and, translocation of SIK1 are followed by the phosphorylation and nuclear export of histone deacetylase 5 (HDAC5). Blockade of SIK activity with a low concentration of staurosporine abolished BDNF-induced phosphorylation and nuclear export of HDAC5 in cortical neurons. Importantly, stimulation of HDAC5 phosphorylation and nuclear export by BDNF is accompanied by the activation of MEF2-mediated transcription, an effect that is suppressed by staurosporine. Consistent with these data, BDNF induces the expression of the MEF2 target genes Arc and Nur77, in a staurosporine-sensitive manner. In further support of the role of SIK1 in the regulation of MEF2-dependent transcription by BDNF, we found that expression of wild-type SIK1 or S577A SIK1, a mutated form of SIK1 which is retained in the nucleus of transfected cells, is sufficient to enhance MEF2 transcriptional activity in cortical neurons. Together, these data identify a previously unrecognized mechanism by which SIK1 mediates the activation of MEF2-dependent transcription by BDNF.
Resumo:
Then, the expression of angiogenesis markers (western blotting), the formation of portosystemic collaterals (radioactive microspheres) and the production of superoxide anion (lucigenin-enhanced chemiluminescence) were determined. Mean arterial pressure, portal pressure, and superior mesenteric arterial blood flow and resistance were also measured.Results: In portal hypertensive rats, NAD(P)H oxidase blockade significantly decreased portosystemic collateral formation, and superior mesenteric arterial flow. It also reduced the splanchnic expression of VEGF, VEGF receptor-2 and CD31, and attenuated the increased production of superoxide, compared with vehicle.Conclusions: NAD(P)H oxidase plays an important role in experimental portal hypertension, modulating splanchnic angiogenesis, the formation of portosystemic collaterals and the development of splanchnic hyperdynamic circulation. These results suggest that NAD(P)H oxidase may represent a new target in the treatment of portal hypertension.
Resumo:
Drugs of abuse, such as psychostimulants and opiates, are generally considered as exerting their locomotor and rewarding effects through an increased dopaminergic transmission in the nucleus accumbens. Noradrenergic transmission may also be implicated because most psychostimulants increase norepinephrine (NE) release, and numerous studies have indicated interactions between noradrenergic and dopaminergic neurons through alpha1-adrenergic receptors. However, analysis of the effects of psychostimulants after either destruction of noradrenergic neurons or pharmacological blockade of alpha1-adrenergic receptors led to conflicting results. Here we show that the locomotor hyperactivities induced by d-amphetamine (1-3 mg/kg), cocaine (5-20 mg/kg), or morphine (5-10 mg/kg) in mice lacking the alpha1b subtype of adrenergic receptors were dramatically decreased when compared with wild-type littermates. Moreover, behavioral sensitizations induced by d-amphetamine (1-2 mg/kg), cocaine (5-15 mg/kg), or morphine (7.5 mg/kg) were also decreased in knock-out mice when compared with wild-type. Ruling out a neurological deficit in knock-out mice, both strains reacted similarly to novelty, to intraperitoneal saline, or to the administration of scopolamine (1 mg/kg), an anti-muscarinic agent. Finally, rewarding properties could not be observed in knock-out mice in an oral preference test (cocaine and morphine) and conditioned place preference (morphine) paradigm. Because catecholamine tissue levels, autoradiography of D1 and D2 dopaminergic receptors, and of dopamine reuptake sites and locomotor response to a D1 agonist showed that basal dopaminergic transmission was similar in knock-out and wild-type mice, our data indicate a critical role of alpha1b-adrenergic receptors and noradrenergic transmission in the vulnerability to addiction.
Resumo:
Co-administration of antihypertensive agents with different modes of action is required in most hypertensive patients to control blood pressure. This led to the development of fixed-dose combinations of established efficacy and tolerability, with the convenience of a single tablet facilitating long-term adherence with therapy. Blockade of the renin-angiotensin system (RAS) is widely used in hypertensive patients, particularly in those at high risk of cardiovascular or renal diseases. There is therefore a strong rationale for including a blocker of the RAS in fixed combinations, together with either a diuretic or a calcium antagonist. Patient characteristics and cardiovascular risk profiles are useful in guiding the choice of combinations administered. Adding a diuretic or a calciumantagonist to aRAS blocker is a valuable option in practically all patients, whether or not they have comorbidities. Amajor task is to individualize the treatment, ie, to find a drug regimen that normalizes the patient's blood pressure while preserving his or her quality of life. This can be achieved in most patients using the fixeddose combination containing the angiotensin-converting enzyme inhibitor perindopril and the diuretic indapamide. A number of trials have established the antihypertensive efficacy and the protective effects of this combination in hypertensive patients, which justifies its broad use in patients with blood pressure uncontrolled by other blood pressure-lowering agents.
Resumo:
BACKGROUND AND PURPOSE: The major drug-metabolizing enzymes for the oxidation of oxycodone are CYP2D6 and CYP3A. A high interindividual variability in the activity of these enzymes because of genetic polymorphisms and/or drug-drug interactions is well established. The possible role of an active metabolite in the pharmacodynamics of oxycodone has been questioned and the importance of CYP3A-mediated effects on the pharmacokinetics and pharmacodynamics of oxycodone has been poorly explored. EXPERIMENTAL APPROACH: We conducted a randomized crossover (five arms) double-blind placebo-controlled study in 10 healthy volunteers genotyped for CYP2D6. Oral oxycodone (0.2 mg x kg(-1)) was given alone or after inhibition of CYP2D6 (with quinidine) and/or of CYP3A (with ketoconazole). Experimental pain (cold pressor test, electrical stimulation, thermode), pupil size, psychomotor effects and toxicity were assessed. KEY RESULTS: CYP2D6 activity was correlated with oxycodone experimental pain assessment. CYP2D6 ultra-rapid metabolizers experienced increased pharmacodynamic effects, whereas cold pressor test and pupil size were unchanged in CYP2D6 poor metabolizers, relative to extensive metabolizers. CYP2D6 blockade reduced subjective pain threshold (SPT) for oxycodone by 30% and the response was similar to placebo. CYP3A4 blockade had a major effect on all pharmacodynamic assessments and SPT increased by 15%. Oxymorphone C(max) was correlated with SPT assessment (rho(S)= 0.7) and the only independent positive predictor of SPT. Side-effects were observed after CYP3A4 blockade and/or in CYP2D6 ultra-rapid metabolizers. CONCLUSIONS AND IMPLICATIONS: The modulation of CYP2D6 and CYP3A activities had clear effects on oxycodone pharmacodynamics and these effects were dependent on CYP2D6 genetic polymorphism.
Resumo:
Purpose: Current treatments for arthritis flares in gout (gouty arthritis) are not effective in all patients and may be contraindicated in many due to underlying comorbidities. Urate crystals activate the NALP 3 inflammasome which stimulate production of IL-1β, driving inflammatory processes. Targeted IL-1β blockade may be an alternative treatment for gouty arthritis. Canakinumab (ACZ885) is a fully human monoclonal anti- IL-1β antibody with a long half-life (28 days). Method: This was an 8-weeks, dose-ranging, multicenter, blinded, double-dummy, active-controlled trial of patients ≥18 to ≤80 y with an acute gouty arthritis flare, refractory to or contraindicated to NSAIDs and/or colchicine. Patients were randomized to 1 subcutanous (sc) dose of canakinumab (10, 25, 50, 90, or 150 mg) or 1 intra muscular (im) dose of triamcinolone acetonide (TA) [40 mg]. The primary variable was assessed 72 h post-dose, measured on a 0-100 mm VAS pain scale. Secondary variables included pain intensity 24 and 48 h post dose, time to 50% reduction in pain intensity, and time to recurrence of gout flares up to 8 weeks post dose. Results: 200 patients were enrolled (canakinumab n=143, TA n=57) and 191 completed the study. A statistically significant dose response was observed at 72 h. The 150 mg dose reached superior pain relief compared to TA starting from 24h: estimated mean difference in pain intensity on 0-100 mm VAS was -11.5 at 24 h, -18.2 at 48 h, and -19.2 at 72 h (all p<0.05). Canakinumab 150 mg provided a rapid onset of pain relief: median time to 50% reduction in pain was reached at 1 day with canakinumab 150 mg vs 2 days for the TA group (p=0.0006). The probability of recurrent gout flares was 3.7% with canakinumab 150 mg vs. 45.4% with TA 8 weeks post treatment, a relative risk reduction of 94% (p=0.006). Serious AEs occurred in 2 patients receiving canakinumab (appendicitis and carotid artery stenosis) and 1 receiving TA (cerebrovascular disorder). Investigator's reported these events as not study drug related. There were no discontinuations due to AEs. Conclusion: Canakinumab 150 mg provided faster onset and superior pain relief compared to TA for acute flares in gouty arthritis patients refractory to or contraindicated to standard treatments. The 150 mg dose of canakinumab prevented recurrence of gout flares with a relative risk reduction compared to TA of 94% at 8 weeks post-dose, and was well tolerated.
Resumo:
NAD(+) biosynthesis through nicotinamide phosphoribosyltransferase (NAMPT) holds potential as a target for the treatment of inflammatory disorders due to NAD(+)'s role in immune cell signaling and metabolism. In addition to its activity as an enzyme, NAMPT is also secreted in the extracellular space where it acts as a pro-inflammatory and proangiogenic cytokine. NAMPT inhibition with FK866 has anti-inflammatory activity in different models of immune disorders and it prevents ischemia-reperfusion-induced heart damage by dampening the production of neutrophil chemoattractants. NAMPT blockade with a neutralizing antibody has beneficial effects in an acute lung injury model. Last, but not least, the anticancer activity of NAMPT inhibitors may also reflect, at least in part, their ability to modify the cancer microenvironment through their anti-inflammatory properties. Overall, NAMPT inhibition holds potential for the treatment of inflammation-related disorders and the development of effective and safe NAMPT inhibitors remains an area of strong interest in pharmaceutical research.
Resumo:
These studies show that either central pharmacological blockade or genetic ablation of alpha(1B)-adrenoceptors markedly attenuates the behavioral activation caused by modafinil, implicating these receptors in the drug's action.