924 resultados para MUTANT ENZYME
Resumo:
The POU4F2/Brn-3b transcription factor has been identified as a potentially novel regulator of key metabolic processes. Loss of this protein in Brn-3b knockout (KO) mice causes profound hyperglycemia and insulin resistance (IR), normally associated with type 2 diabetes (T2D), whereas Brn-3b is reduced in tissues taken from obese mice fed on high-fat diets (HFD), which also develop hyperglycemia and IR. Furthermore, studies in C2C12 myocytes show that Brn-3b mRNA and proteins are induced by glucose but inhibited by insulin, suggesting that this protein is itself highly regulated in responsive cells. Analysis of differential gene expression in skeletal muscle from Brn-3b KO mice showed changes in genes that are implicated in T2D such as increased glycogen synthase kinase-3β and reduced GLUT4 glucose transporter. The GLUT4 gene promoter contains multiple Brn-3b binding sites and is directly transactivated by this transcription factor in cotransfection assays, whereas chromatin immunoprecipitation assays confirm that Brn-3b binds to this promoter in vivo. In addition, correlation between GLUT4 and Brn-3b in KO tissues or in C2C12 cells strongly supports a close association between Brn-3b levels and GLUT4 expression. Since Brn-3b is regulated by metabolites and insulin, this may provide a mechanism for controlling key genes that are required for normal metabolic processes in insulin-responsive tissues and its loss may contribute to abnormal glucose uptake.
Resumo:
Cytochrome P450 (CYP) enzymes play a pivotal role in the metabolism of many drugs. Inhibition of CYP enzymes usually increases the plasma concentrations of their substrate drugs and can thus alter the safety and efficacy of these drugs. The metabolism of many widely used nonsteroidal antiinflammatory drugs (NSAIDs) as well as the metabolism of the antidepressant venlafaxine is nown to be catalyzed by CYP enzymes. In the present studies, the effect of CYP inhibition on the armacokinetics and pharmacodynamics of NSAIDs and venlafaxine was studied in clinical trials with healthy volunteers and with a crossover design, by using different antifungal agents as CYP inhibitors. The results of these studies demonstrate that the inhibition of CYP enzymes leads to increased concentrations of NSAIDs. In most cases, the exposure to ibuprofen, diclofenac, etoricoxib, and meloxicam was increased 1.5to 2 fold when they were used concomitantly with antifungal agents. CYP2D6 inhibitor, terbinafine, substantially increased the concentration of parent venlafaxine, whereas the concentration of active moiety of venlafaxine (parent drug plus active metabolite) was only slightly increased. Voriconazole, an inhibitor of the minor metabolic pathway of venlafaxine, produced only minor changes in the pharmacokinetics of venlafaxine. These studies show that an evident increase in the concentrations of NSAIDs may be expected, if they are used concomitantly with CYP inhibitors. However, as NSAIDs are generally well tolerated, use of single doses of NSAIDs concomitantly with CYP inhibitors is not likely to adversely affect patient safety, whereas clinical relevance of longterm concomitant use of NSAIDs with CYP inhibitors needs further investigation. CYP2D6 inhibitors considerably affect the pharmacokinetics of venlafaxine, but the clinical significance of this interaction remains unclear.
Resumo:
This report outlines the discovery, the design and development of new compounds, and, structure-activity relationships for this drug category. Updated approaches to planned syntheses of new worthy ACE-inhibitors are also exploited.
Resumo:
The effects of diet composition and ration size on the activities of key enzymes involved in intermediary metabolism were studied in the liver of gilthead sea bream (Sparus aurata). Highcarbohydrate, low-protein diets stimulated 6-phosphofructo 1-kinase (EC 2.7.1.11), pyruvate kinase (EC 2.7.1.40), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) enzyme activities, while they decreased alanine aminotransferase (EC 2.6.1.2) activity. A high degree of correlation was found between food ration size and the activity of the enzymes 6-phosphofructo 1-kinase, pyruvate kinase, glucose-6-phosphate dehydrogenase (positive correlations) and fructose-1,6-bisphosphatase (EC 3.1.3.11) (negative correlation). These correlations matched well with the high correlation also found between ration size and growth rate in starved fish refed for 22 d. Limited feeding (5 g/kg body weight) for 22 d decreased the activities of the key enzymes for glycolysis and lipogenesis, and alanine aminotransferase activity. The findings presented here indicate a high level of metabolic adaptation to both diet type and ration size. In particular, adaptation of enzyme activities to the consumption of a diet with a high carbohydrate level suggests that a carnivorous fish like Sparus aurata can tolerate partial replacement of protein by carbohydrate in the commercial diets supplied in culture. The relationship between enzyme activities, ration size and fish growth indicates that the enzymes quickly respond to dietary manipulations of cultured fish.
Resumo:
The effects of diet composition and ration size on the activities of key enzymes involved in intermediary metabolism were studied in the liver of gilthead sea bream (Sparus aurata). Highcarbohydrate, low-protein diets stimulated 6-phosphofructo 1-kinase (EC 2.7.1.11), pyruvate kinase (EC 2.7.1.40), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) enzyme activities, while they decreased alanine aminotransferase (EC 2.6.1.2) activity. A high degree of correlation was found between food ration size and the activity of the enzymes 6-phosphofructo 1-kinase, pyruvate kinase, glucose-6-phosphate dehydrogenase (positive correlations) and fructose-1,6-bisphosphatase (EC 3.1.3.11) (negative correlation). These correlations matched well with the high correlation also found between ration size and growth rate in starved fish refed for 22 d. Limited feeding (5 g/kg body weight) for 22 d decreased the activities of the key enzymes for glycolysis and lipogenesis, and alanine aminotransferase activity. The findings presented here indicate a high level of metabolic adaptation to both diet type and ration size. In particular, adaptation of enzyme activities to the consumption of a diet with a high carbohydrate level suggests that a carnivorous fish like Sparus aurata can tolerate partial replacement of protein by carbohydrate in the commercial diets supplied in culture. The relationship between enzyme activities, ration size and fish growth indicates that the enzymes quickly respond to dietary manipulations of cultured fish.
Resumo:
ELISAs have been applied to pesticide residue analysis due to their high sensitivity and selectivity. However, some ELISAs performance may be affected by matrix components. In this work, ELISA for carbaryl in water samples was checked for interference by naturally occurring fulvic acids. The results suggested that the high fulvic acid concentration (³30 mg L-1) and acidic pH conditions (pH 4.0) interfere with the signal detection decreasing the method sensitivity. A dilution of the samples and adjust to pH 8.0 are appropriate to minimize the matrix interferences in the ELISA method. Good correlation between ELISA and HPLC-DAD results was observed.
Resumo:
Background: Insects respond to the spatial and temporal dynamics of a pheromone plume, which implies not only a strong response to"odor on", but also to"odor off". This requires mechanisms geared toward a fast signal termination. Several mechanisms may contribute to signal termination, among which odorant-degrading enzymes. These enzymes putatively play a role in signal dynamics by a rapid inactivation of odorants in the vicinity of the sensory receptors, although direct in vivo experimental evidences are lacking. Here we verified the role of an extracellular carboxylesterase, esterase-6 (Est-6), in the sensory physiological and behavioral dynamics of Drosophila melanogaster response to its pheromone, cis-vaccenyl acetate (cVA). Est-6 was previously linked to post-mating effects in the reproductive system of females. As Est-6 is also known to hydrolyze cVA in vitro and is expressed in the main olfactory organ, the antenna, we tested here its role in olfaction as a putative odorant-degrading enzyme. Results: We first confirm that Est-6 is highly expressed in olfactory sensilla, including cVA-sensitive sensilla, and we show that expression is likely associated with non-neuronal cells. Our electrophysiological approaches show that the dynamics of olfactory receptor neuron (ORN) responses is strongly influenced by Est-6, as in Est-6° null mutants (lacking the Est-6 gene) cVA-sensitive ORN showed increased firing rate and prolonged activity in response to cVA. Est-6° mutant males had a lower threshold of behavioral response to cVA, as revealed by the analysis of two cVAinduced behaviors. In particular, mutant males exhibited a strong decrease of male-male courtship, in association with a delay in courtship initiation. Conclusions: Our study presents evidence that Est-6 plays a role in the physiological and behavioral dynamics of sex pheromone response in Drosophila males and supports a role of Est-6 as an odorant-degrading enzyme (ODE) in male antennae. Our results also expand the role of Est-6 in Drosophila biology, from reproduction to olfaction, and highlight the role of ODEs in insect olfaction. Keywords: carboxylesterase, esterase 6, olfaction, pheromone, signal termination
Resumo:
Fungi and bacteria are key agents in plant litter decomposition in freshwater ecosystems. However, the specific roles of these two groups and their interactions during the decomposition process are unclear. We compared the growth and patterns of degradativeenzymes expressed by communities of bacteria and fungi grown separately and in coexistence on Phragmites leaves. The two groups displayed both synergistic and antagonistic interactions. Bacteria grew better together with fungi than alone. In addition, there was a negative effect of bacteria on fungi, which appeared to be caused by suppression of fungal growth and biomass accrual rather than specifically affecting enzyme activity. Fungi growing alone had a high capacity for the decomposition of plant polymers such as lignin, cellulose, and hemicellulose. In contrast, enzyme activities were in general low when bacteria grew alone, and the activity of key enzymes in the degradation of lignin and cellulose (phenol oxidase and cellobiohydrolase) was undetectable in the bacteria-only treatment. Still, biomass-specific activities of most enzymes were higher in bacteria than in fungi. The low total activity and growth of bacteria in the absence of fungi in spite of apparent high enzymatic efficiency during the degradation of many substrates suggest that fungi provide the bacteria with resources that the bacteria were not able to acquire on their own, most probably intermediate decomposition products released by fungi that could be used by bacteria
Resumo:
Lipid overload in obesity and type 2 diabetes is associated with adipocyte dysfunction, inflammation, macrophage infiltration, and decreased fatty acid oxidation (FAO). Here, we report that the expression of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme in mitochondrial FAO, is higher in human adipose tissue macrophages than in adipocytes and that it is differentially expressed in visceral vs. subcutaneous adipose tissue in both an obese and a type 2 diabetes cohort. These observations led us to further investigate the potential role of CPT1A in adipocytes and macrophages. We expressed CPT1AM, a permanently active mutant form of CPT1A, in 3T3-L1 CARΔ1 adipocytes and RAW 264.7 macrophages through adenoviral infection. Enhanced FAO in palmitate-incubated adipocytes and macrophages reduced triglyceride content and inflammation, improved insulin sensitivity in adipocytes, and reduced endoplasmic reticulum stress and ROS damage in macrophages. We conclude that increasing FAO in adipocytes and macrophages improves palmitate-induced derangements. This indicates that enhancing FAO in metabolically relevant cells such as adipocytes and macrophages may be a promising strategy for the treatment of chronic inflammatory pathologies such as obesity and type 2 diabetes.
Resumo:
Lipid overload in obesity and type 2 diabetes is associated with adipocyte dysfunction, inflammation, macrophage infiltration, and decreased fatty acid oxidation (FAO). Here, we report that the expression of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme in mitochondrial FAO, is higher in human adipose tissue macrophages than in adipocytes and that it is differentially expressed in visceral vs. subcutaneous adipose tissue in both an obese and a type 2 diabetes cohort. These observations led us to further investigate the potential role of CPT1A in adipocytes and macrophages. We expressed CPT1AM, a permanently active mutant form of CPT1A, in 3T3-L1 CARΔ1 adipocytes and RAW 264.7 macrophages through adenoviral infection. Enhanced FAO in palmitate-incubated adipocytes and macrophages reduced triglyceride content and inflammation, improved insulin sensitivity in adipocytes, and reduced endoplasmic reticulum stress and ROS damage in macrophages. We conclude that increasing FAO in adipocytes and macrophages improves palmitate-induced derangements. This indicates that enhancing FAO in metabolically relevant cells such as adipocytes and macrophages may be a promising strategy for the treatment of chronic inflammatory pathologies such as obesity and type 2 diabetes.
Resumo:
The HERC gene family encodes proteins with two characteristic domains: HECT and RCC1-like. Proteins with HECT domain shave been described to function as ubiquitin ligases, and those that contain RCC1-like domains have been reported to function as GTPases regulators. These two activities are essential in a number of important cellular processes such as cell cycle, cell signaling, and membrane trafficking. Mutations affecting these domains have been found associated with retinitis pigmentosa, amyotrophic lateral sclerosis, and cancer. In humans, six HERC genes have been reported which encode two subgroups of HERC proteins: large (HERC1-2) and small (HERC3-6). The giant HERC1 protein was the first to be identified. It has been involved in membrane trafficking and cell proliferation/growth through its interactions with clathrin, M2-pyruvate kinase, and TSC2 proteins. Mutations affecting other members of the HERC family have been found to be associated with sterility and growth retardation. Here, we report the characterization of a recessive mutation named tambaleante, which causes progressive Purkinje cell degeneration leading to severe ataxia with reduced growth and lifespan in homozygous mice aged over two months. We mapped this mutation in mouse chromosome 9 and then performed positional cloning. We found a GuA transition at position 1448, causing a Gly to Glu substitution (Gly483Glu) in the highly conserved N- terminal RCC1-like domain of the HERC1 protein. Successful transgenic rescue, with either a mouse BAC containing the normal copy of Herc1 or with the human HERC1 cDNA, validated our findings. Histological and biochemical studies revealed extensive autophagy associated with an increase of the mutant protein level and a decrease of mTOR activity. Our observations concerning this first mutation in the Herc1 gene contribute to the functional annotation of the encoded E3 ubiquitin ligase and underline the crucial and unexpected role of this protein in Purkinje cell physiology.
Resumo:
The inhibition of the enzyme acetylcholinesterase is considered as a strategy for the treatment of Alzheimer's disease, senile dementia, ataxia, and myasthenia gravis. Three lanostane- and two cycloartane-type triterpenes, together with two mulinane-type diterpenes were isolated from petroleum ether extract of the whole shrub of Azorella trifurcata (Gaertn.) Pers. Their effect on the enzyme acetylcholinesterase was assessed as well. In addition, this is the first report of these triterpenes in the genus Azorella.
Resumo:
The enzymatic hydrolysis of steam-pretreated sugarcane bagasse, either delignified or non-delignified, was studied as a function of enzyme loading. Hydrolysis experiments were carried out using five enzyme loadings (2.5 to 20 FPU/g cellulose) and the concentration of solids was 2% for both materials. Alkaline delignification improved cellulose hydrolysis by increasing surface area. For both materials, glucose concentrations increased with enzyme loading. On the other hand, enzyme loadings higher than 15 FPU/g did not result in any increase in the initial rate, since the excess of enzyme adsorbed onto the substrate restricted the diffusion process through the structure.
Resumo:
Polysialic acid is a carbohydrate polymer which consist of N-acetylneuraminic acid units joined by alpha2,8-linkages. It is developmentally regulated and has an important role during normal neuronal development. In adults, it participates in complex neurological processes, such as memory, neural plasticity, tumor cell growth and metastasis. Polysialic acid also constitutes the capsule of some meningitis and sepsis-causing bacteria, such as Escherichia coli K1, group B meningococci, Mannheimia haemolytica A2 and Moraxella nonliquefaciens. Polysialic acid is poorly immunogenic; therefore high affinity antibodies against it are difficult to prepare, thus specific and fast detection methods are needed. Endosialidase is an enzyme derived from the E. coli K1 bacteriophage, which specifically recognizes and degrades polysialic acid. In this study, a novel detection method for polysialic acid was developed based on a fusion protein of inactive endosialidase and the green fluorescent protein. It utilizes the ability of the mutant, inactive endosialidase to bind but not cleave polysialic acid. Sequencing of the endosialidase gene revealed that amino acid substitutions near the active site of the enzyme differentiate the active and inactive forms of the enzyme. The fusion protein was applied for the detection of polysialic acid in bacteria and neuroblastoma. The results indicate that the fusion protein is a fast, sensitive and specific reagent for the detection of polysialic acid. The use of an inactive enzyme as a specific molecular tool for the detection of its substrate represents an approach which could potentially find wide applicability in the specific detection of diverse macromolecules.
Resumo:
Pothomorphe umbellata (L.) known on Brazil as Caapeba has a number of popular medicinal use, and it has been studied in relation to its pharmacological activity. Peroxidase specific activity (units/mg protein) was evaluated in callus cell culture samples of the P.umbellata, grown in two different MS medium (media 1 and media 2), submitted to 16 hours photoperiod or kept in darkness. Cell growth rate curve showed that the best growth indices were observed when media 2 submitted to the photoperiod regime was used, followed by the same media kept in darkness (stress condition). The results obtained also showed that the cell culture grown under stress conditions (darkness) lead to high content of peroxidase enzyme (an increase of 700% was observed). Kinetic constant values of 3.3 mmol.L-1 and 2,8 sec-1 were obtained for kM and v max,, respectively, using guaiacol as enzyme substrate.