728 resultados para MINERALES
Resumo:
En la actualidad está plenamente reconocida la importancia de la caracterización mineralógica en el ámbito de la minería. Su aplicación es fundamental no sólo durante la etapa de diseño del circuito de concentración mineral, sino que se extiende también al control de calidad de los concentrados, al ajuste del circuito frente a variaciones de composición a medida que avanza la extracción en la mina, e incluso a la prevención de contaminación medioambiental. Tradicionalmente, el mineralogista se ha apoyado en el microscopio óptico y el contador de puntos para llevar a cabo la caracterización mineralógica. Sin embargo, una industria minera cada vez más exigente junto con la paulatina desaparición de expertos mineralogistas ha contribuido en gran medida al desarrollo de nuevas técnicas de análisis y a la evolución de las ya existentes. A menudo estas técnicas se apoyan en instrumentos costosos y de difícil mantenimiento (como el microscopio electrónico de barrido y la tecnología QEMSCAN), solo al alcance de grandes compañías mineras. Por todo ello, parece evidente que es necesaria una técnica que pueda realizar una caracterización mineral completa de manera más fiable y rápida que los métodos tradicionales, pero con un coste al alcance de la pequeña y mediana industria minera. El proyecto CAMEVA demuestra que esto es posible mediante un sistema automatizado de caracterización mineral basado en el análisis digital de imagen aplicado a la microscopia óptica de reflexión
Resumo:
El trabajo que se presenta tiene la finalidad de ofrecer una descripción sistemática de algunas variedades de áridos naturales que yacen en la parte central de la Caldera de Los Frailes, en el Sureste de la Península Ibérica. Con el estudio detallado de 22 muestras, se identificaron las especies minerales formadoras de rocas, rasgos texturales, abundancia modal, alteraciones secundarias y petrogénesis. Los resultados obtenidos han permitido identificar varios tipos de áridos naturales en la Caldera de los Frailes, de acuerdo con sus propiedades petrográficas, representados, entre otros, por andesitas piroxénicas, dacitas y sus tobas, productos piroclásticos, zeolitas y bentonitas. El grado de conocimiento aportado por esta investigación la convierte en una guía práctica para orientar a los interesados en el uso efectivo y racional de estos áridos.
Resumo:
Dentro de la amplia diversidad de rocas y minerales industriales que yacen en la República de Guinea Ecuatorial se encuentran los yacimientos e indicios de arenas silíceas de Bioko Norte. Las escasas crónicas mencionan actividades de explotación esporádica y temporera en tres pequeñas cortas, actualmente paralizadas, que se ubican en la aldea de El Cacahual, aproximadamente al suroeste de la ciudad de Malabo, destinadas a la fabricación de morteros para pequeñas construcciones locales. Sin embargo, no se registran estudios sobre la composición y la calidad tecnológica de estos materiales. Los recientes trabajos de investigación llevados a cabo por investigadores de la Escuela de Minas de Madrid y la Universidad de Moa (Cuba), con la colaboración de profesores de la Universidad Nacional de Guinea Ecuatorial, y cuyos resultados se ofrecen en estas líneas, incluyeron campaña de muestreo, caracterización y aplicaciones de estos materiales. Las primeras conclusiones establecen que en la composición sustancial de estos yacimientos aparece el cuarzo como principal fase mineral, acompañado por feldespato, caolinita, mica moscovita e illita (DRX). El estudio morfológico de las muestras por medio de la microscopía electrónica de barrido (MEB) permitió describir granos con dimensiones muy cercanas y con formas angulosas, subangulosas y ocasionalmente subredondeadas, que indican un transporte escaso o casi nulo; esta evidencia infiere la naturaleza residual de estos yacimientos, formados a partir de la alteración y posterior redeposición eluvial de un supuesto protolito de composición granitoide. Por otra parte, la presencia de fases representadas por dolomita y hematita podrían ser el testimonio de la acción de procesos hidrotermales que afectaron a estas formaciones. Otras tareas que complementaron esta investigación, como el estudio granulométrico, contenido en materia orgánica y ensayos de resistencias mecánicas, que fueron realizadas por el Laboratorio Oficial para Ensayos de Materiales de Construcción (LOEMCO), corroboran la calidad tecnológica de estas arenas.
Resumo:
Las rocas efusivas formadas por la actividad volcánica del volcán Basilé constituyen la principal fuente de áridos naturales de la Isla de Bioko, en Guinea Ecuatorial. El auge alcanzado por la construcción en la ciudad de Malabo, Malabo II y Malabo III, son un testimonio concluyente del volumen de áridos empleado para erigir los nuevos polígonos, urbanizaciones, infraestructura portuaria, carreteras, presas, alcantarillados y paseos marítimos. Gran parte de los materiales de construcción, fundamentalmente el cemento, procede de las importaciones, mientras que las rocas y minerales industriales autóctonos se conocen poco, opacados por el papel hegemónico del petróleo y el gas natural. El desconocimiento casi absoluto de las propiedades químicas, petrográficas y mecánicas de estas rocas, y la existencia de un sistema normativo pobre, ha provocado su uso indiscriminado y una controvertida calidad en la elaboración de los productos finales. Asimismo, la falta de experiencia en ingeniería y geotecnia para el desarrollo de minas y canteras, y la intermitencia de una ley de minas poco consolidada, ha favorecido la germinación indiscriminada de un gran número de excavaciones, propensas a continuos derrumbes y a la producción de impactos medioambientales irreversibles. La presente contribución científica se ha marcado como objetivo mostrar los resultados obtenidos del análisis y caracterización de estas formaciones volcánicas, así como su posible aprovechamiento industrial mediante el aporte de datos sobre sus propiedades puzolánicas e idoneidad en la elaboración de morteros. Los datos indican que estas rocas eruptivas, fundamentalmente escorias y flujos de lavas de composición basáltica, son capaces de sustituir al cemento pórtland normal hasta en un 25%, favoreciendo el incremento de las resistencias mecánicas normales con valores que sobrepasan los 37 Mpa a 28 días. El análisis de las muestras mediante el método de la puzolanicidad a 7 días dejó establecido el carácter puzolánico de estas rocas, que fue corroborado por la interpretación de citados ensayos mecánicos. El estudio de la composición química detectó contenidos en SiO2 (44,40%), Al2O3 (15,58%), CaO (9,32%), MgO (4,25%) y Fe2O3 (13,63%), y cantidades despreciables de azufre, sulfatos y materia orgánica. Los análisis de difracción de rayos x revelaron la presencia mayoritaria de una fase compuesta por feldespato, y una fase subordinada constituida por cuarzo, hematita y dolomita. El estudio mediante microscopía electrónica de barrido permitió comprobar la ausencia casi total de las especies vítreas. Los resultados que se presentan en este trabajo, podrían devenir en información útil para el posible emplazamiento de una fábrica de cemento puzolánico en la Isla de Bioko; la actual fábrica Abayak, única en Guinea Ecuatorial, y que se encuentra situada en la parte continental del país, no aporta suficiente producción para las demandas cada vez mayores de la construcción.
Resumo:
El caolín es una arcilla, blanca procedente de la descomposición de rocas feldespáticas y puede venir mezclada con cuarzo, feldespato y minerales ferruginosos. El caolín que se trata en esta ponencia procede la compañía Caolina, ubicada en Arguisuelas - Cuenca (España). El objetivo es la explotación minera, lavado, concentración y comercialización de caolín y arena silícea, dado que los dos minerales aparecen conjuntamente en la explotación. Caolina explota a cielo abierto su recurso minero, para obtener un producto cuyas características sean aceptadas por grandes fabricantes de porcelana sanitaria y de esmaltes cerámicos. El valor añadido de los productos finales de Caolina se aporta en la planta de tratamiento, mediante procesos de molienda, lavado, cribado, hidrociclonado, filtrado, secado y extrusionado. El caolín es un mineral básico para la fabricación de la porcelana sanitaria y otros materiales cerámicos de construcción tales como baldosas, azulejos, tejas y sus correspondientes esmaltes. En Caolina el principal mercado es la porcelana sanitaria dadas las excelentes propiedades cerámicas del producto. El segundo mineral que se obtiene en Caolina, es un importante material de construcción, la arena silícea. Además de las aplicaciones en la industria de la cerámica, el vidrio y los abrasivos, la arena silícea es un constituyente de morteros y hormigones de alta resistencia a la abrasión. Caolina comercializa su arena silícea fundamentalmente para estos prefabricados de hormigón. Además, la arena silícea presenta muy buenas propiedades como material de construcción drenante y filtrante. El artículo describe detalladamente las aplicaciones del caolín de Caolina en los materiales cerámicos y de construcción
Resumo:
Las adiciones activas en los hormigones son cada día más usuales, no solo debido a razones económicas, sino porque los efectos que se desarrollan son beneficiosos para las prestaciones del hormigón, léase durabilidad y resistencias mecánicas. En Cuba ha sido frenada al no existir fuentes como las tradicionalmente conocidas y comercializadas como es cenizas volantes y las micro sílices (silica fume o fly ash). El desarrollo de estudios de algunos minerales industriales nacionales de génesis ígnea como los vidrios volcánicos, tobas vítreas o zeolitas han demostrado su actividad puzolánica. Es conocido que la zeolita tiene actividad puzolánica desde la época romana, y actualmente se utilizan en el mundo para la producción de cementos mezclados, sin embargo la experiencia cubana es el precedente de su uso como adición activa a hormigones. Se han realizado investigaciones a diferentes escalas del uso de adiciones de zeolita en tecnologías de prefabricado, premezclado y pretensado que han demostrado las mejoras en las prestaciones. El presente trabajo explica el aumento de las prestaciones antes demostradas mediante el estudio de los cambios microestructurales, tanto de composición química como en la morfología de los productos de hidratación formados, a partir de análisis por microscopia electrónica de barrido y microanálisis por espectroscopia de dispersión de energía de rayos X en pasta de cemento y cemento + zeolita comparativamente.
Resumo:
Este libro ha nacido de las clases de Mecánica de Rocas que impartimos en la Universidad Politécnica de Madrid y en la de Vigo, y en el Máster Internacional “Aprovechamiento Sostenible de los Recursos Minerales”. Ha sido escrito pensando en los universitarios y en los profesionales de la geotecnia. A ambos colectivos les dedicamos con todo cariño esta obra en la que hemos invertido muchas horas durante los últimos años. El impulso para ponernos a escribir surgió cuando recibimos el encargo de la Cátedra Madariaga de la Escuela Técnica Superior de Ingenieros de Minas de la UPM de organizar unos cursos sobre estabilidad de taludes, que fueron financiados por la Comisión Nacional de Seguridad Minera, y el apoyo prestado por el Máster contribuyó a que se terminara el libro. Hay en esta obra dos partes claramente diferenciadas. La primera es de Fundamentos de Mecánica de Rocas y aquellos que posean ya un conocimiento general sobre esta materia podrían saltársela y comenzar a leer el libro en la segunda parte, que está dedicada a la Ingeniería de Taludes. No obstante, recordar las bases nunca está de más por lo que, sin duda alguna, la lectura ordenada del libro, de principio a fin, puede resultar muy provechosa. Evidentemente la obra es incompleta pues tanto la Mecánica de Rocas como la Ingeniería de Taludes han adquirido una extensión tal que resulta imposible resumirlas en un sólo libro, aunque sea tan extenso como éste. Los fundamentos variarán poco en los próximos años, pero ciertos aspectos prácticos y métodos de cálculo posiblemente serán superados en breve plazo. Esperamos, sin embargo, que el libro resulte útil durante un tiempo al menos tan largo como el que nos ha llevado escribirlo. El nivel de conocimientos que se requiere para leer el libro está al alcance de los alumnos de nuestras universidades; a propósito se ha partido de unas bases accesibles. No obstante, los problemas que se presentan en la ingeniería de taludes son, en general, únicos y se requiere experiencia para resolverlos correctamente. Varios profesores han contribuido con capítulos a esta obra: D. Ricardo Laín Huerta (Capítulo 9), D. Celestino González Nicieza y Dª Inmaculada Álvarez Fernández (Capítulo 15), Dª. Inmaculada Álvarez Fernández y Miguel Ángel Rodríguez Díaz (Capítulo 16), D. Fernando García Bastante (Capítulo 17), Dª. María Belarmina Díaz Aguado y D. Fernando Ariznavarreta Fernández (Capítulo 18). A todos ellos les agradecemos su colaboración.
Resumo:
El presente Trabajo Fin de Máster recoge el estudio experimental realizado para comprobar el comportamiento de CEM II/B-L 32,5 N con la incorporación, por sustitución del árido, de dos residuos procedentes de la explotación minera de la hulla y la galena, llevada a cabo hace más de 50 años en la provincia de Ciudad Real. En primer lugar se han caracterizado los compuestos minerales que tienen los residuos de los que se ha obtenido que en ambas muestras existen SiO2 (cuarzo) en altas propociones, y que la muestra de galena tiene pequeñas concentraciones de plomo y cinc, entre otros metales. En la parte experimental se realiza la incorporación de un 5%, 10% y 20% de cada uno de los residuos por sustitución de la arena de mina utilizada, con una granulometría inferior a 2 mm de diámetro y a temperatura ambiente. Mediante la realización de las probetas con dos consistencias diferentes, una seca y otra plástica para la realización de un revoco en una rasilla cerámica y comprobar su resistencia a adhesión. Después de comprobar que para utilizar el residuo de hulla hay que desprenderse del 39% de la muestra por superar los 2mm de diámetro de grano para realizar un revoco como marca la norma NTE-rpe, se comprueba que las muestras con 5% de hulla y 10% de galena son válidas para su utilización como revoco o enlucido. Respecto a las características de resistencia a flexión y compresión de ambas muestras se aprecia la tendencia en la muestra de hulla a disminuir cuanto mayor es el porcentaje de éste residuo. En el caso del residuo de galena los resultados más óptimos obtenidos han sido con el 10% de galena en la muestra, notándose una disminución de las características considerables en el 20% de la misma.
Resumo:
El libro aborda la naturaleza de los derechos mineros y de los derechos sobre hidrocarburos, así como la forma en que se gestionan een un caso y en otro. Es una obra destinada a servir de referencia a los profesionales de la minería y de la explotación de recursos minerales y energéticos al abordar también los aspectos jurídicos desde una perspectiva global e integrada.
Resumo:
En el presente estudio se analiza la influencia de la inoculación con Azospirillum brasilense, con Pseudomonas fluorescens y la inoculación conjunta con ambas rizobacterias en las especies de plantas aromáticas Ocimum basilicum var. genovesse, Ocimum basilicum var. minimum, Petroselinum sativum var. lisa y Salvia officinalis. Se evaluará su desarrollo morfológico, atendiendo a tres parámetros: la longitud del tallo, el peso fresco y la superficie foliar. Así como el posible incremento en el contenido de aceite esencial que pueda tener la planta tratada. El cultivo se llevó a cabo en alveolos de ForestPot® 300, sobre mezcla de turba y vermiculita 3:1, con riego diario y sin adición de fertilizantes. Los resultados indican que en todas las especies y en todos los apartados estudiados, la inoculación de las rizobacterias produjo un incremento del desarrollo y del contenido de aceite esencial en comparación con el tratamiento Control, excepto en el caso de la longitud de las dos variedades de O. basilicum al inocularlas con P. fluorescens, en las que produjo una ligera disminución respecto al Control. En el caso de P. sativum var. lisa, solo las plantas que fueron inoculadas sobrevivieron. A partir de estos resultados, puede decirse que la inoculación con estas rizobacteras promotoras del crecimiento puede tener una gran importancia como sustitución de fertilizantes minerales, obteniéndose de este modo una producción más ecológica y respetuosa con el medio.
Resumo:
El trabajo realizado ha pretendido desarrollar y caracterizar una solución de revestimiento continuo interior con características de barrera de vapor e higroscopicidad. El objetivo ha sido desarrollar una solución de revestimiento continuo interior, capaz de reducir el riesgo de condensación intersticial en los cerramientos, manteniendo la capacidad de regulación de la humedad del ambiente interior. ESTUDIO DE ANTECEDENTES 1 La condensación intersticial La condensación intersticial se produce cuando la presión de vapor sobrepasa la presión de vapor de saturación en una de las capas internas del cerramiento. El vapor de agua se transfiere de los locales de mayor presión de vapor a los de menor presión. Para la situación de condensación intersticial, en la estación de calentamiento, las presiones de vapor son más elevadas en el interior del edificio que en el exterior. Entonces existe una transferencia de vapor del interior hacia el exterior y es en ese trayecto cuando pueden producirse las condensaciones intersticiales si éste alcanza la temperatura de rocío. Las consecuencias de la condensación intersticial pueden ser varias, desde la degradación de los materiales, como la corrosión de elementos metálicos; la pudrición de productos orgánicos naturales, como la madera, variaciones dimensionales de las fábricas de ladrillo con posibilidad de deformación del cerramiento y de fisuración de los revestimientos continuos. Pueden también producirse fenómenos de corrosión física provocados por la congelación del agua en los elementos porosos del cerramiento. Los revestimientos continuos pueden también estar sujetos a vegetaciones parasitarias por el exterior del cerramiento o de hongos por el interior, por transferencia del agua condensada a las superficies del cerramiento. Los hongos pueden provocar enfermedades principalmente respiratorias o alergias, al alterar la calidad del aire. La condensación intersticial se produce principalmente en situaciones de bajas temperaturas y elevados grados de humedad especifica exterior. Pero las condiciones de temperatura y principalmente de humedad especifica interior tienen también gran influencia en esta situación patológica. Las condiciones de humedad relativa interior dependen de muchos factores como el tipo y uso del edificio, y en caso de vivienda, del número de ocupantes, de las actividades que se desarrollan, pero esencialmente de la temperatura interior y del grado de ventilación. Las soluciones constructivas también tienen influencia en el riesgo de condensaciones. Las soluciones de cerramientos con aislamientos por el interior y con capas impermeables al vapor por el exterior son las más problemáticas. En esta solución constructiva extrema, tenemos prácticamente todo el cerramiento cerca de las temperaturas exteriores, con gran concentración de vapor de agua. El tipo de aislamiento también es importante, los aislamientos con gran desequilibrio higrotérmico, como las lanas minerales, de fibra de madera, o de fibras textiles, caracterizados por el elevado aislamiento y la elevada permeabilidad al vapor, son los que presentan mayor riesgo. Éstos permiten el paso del vapor y producen un salto acentuado de la temperatura. Su colocación por el interior de los cerramientos incrementa aún más el riesgo de condensaciones. Estos materiales de aislamiento también se caracterizan por tener una menor energía primaria asociada a su fabricación. Por lo tanto merecen una atención especial en la búsqueda de soluciones sostenibles. Así mismo, también puede existir riesgo de condensaciones con aquellos aislamientos de menor permeabilidad al vapor, como los poliméricos o las espumas de vidrio, pero deficientemente aplicados, permitiendo el paso del vapor de agua por las juntas o en los encuentros con forjados, pilares o huecos. La condensación de agua en los aislamientos caracterizados por una elevada permeabilidad al vapor es la situación más problemática porque, además de poder conducir a la pudrición de aislamientos de origen orgánico (como los de fibra de madera), conduce a una disminución del aislamiento del cerramiento y al consecuente incremento del consumo de energía en la obtención del confort térmico. Existen un conjunto de reglas y de soluciones constructivas que pueden reducir el riesgo de condensaciones intersticiales como la colocación de materiales sucesivamente más permeables al vapor, o más aislantes, del interior al exterior. XXXIII Revestimientos exteriores discontinuos y ventilados y aislamientos aplicados por el exterior es la solución extrema de este principio. La aplicación de aislamientos impermeables al vapor es otra solución, siendo necesario que se garantice que las juntas de las placas del aislamiento sean estancas, así como los encuentros con los forjados, pilares y huecos. Otra solución es la aplicación de cerramientos dobles con cámara de aire ventilada, teniendo el cuidado de ventilar solamente la parte fría del cerramiento. Es necesario en estas situaciones, que se garantice que el aislamiento se encuentra aplicado en la cara exterior del ladrillo interior del cerramiento. También es importante controlar el grado de ventilación de la cámara para que no se produzca la pérdida de la resistencia térmica de la hoja de ladrillo exterior. La aplicación de barreras de vapor en la parte caliente del cerramiento es una solución que garantiza la reducción del flujo del vapor del interior hacia el exterior y consecuentemente contribuye a la reducción de la presión de vapor en su lado exterior y en la parte fría del cerramiento. 2 La normativa La normativa española, el Código Técnico de la Edificación de 2006, en su capítulo Ahorro de Energía, establece que no está permitida en ninguna situación, la condensación en el aislamiento. Todavía existiendo condensaciones en otras capas del cerramiento, en la estación de calentamiento, éstas no pueden ser mayores que la evaporación en la estación de enfriamiento. La misma normativa determina que si existe una barrera de vapor en la parte caliente del cerramiento no será necesario comprobar las condiciones anteriores. La normativa portuguesa, el Regulamento das Características do Comportamento Térmico dos Edifícios, de 2006, no tiene ninguna exigencia relativa a las condensaciones intersticiales. Sus autores defienden que en Portugal no es un fenómeno que pueda tener consecuencias graves en los elementos constructivos o en el consumo de energía. En la norma EN 13788 de 2001 están definidos los métodos más comunes de verificación de las condensaciones y de la evaporación y están basados en el Diagrama de Glaser. En base a esta norma es posible verificar el riesgo de condensaciones superficiales y la posibilidad de desarrollo de hongos en la superficie interior del cerramiento. Pero también permite evaluar el riesgo de condensaciones debido a la difusión de vapor de agua. En este método se considera que el agua incorporada en la construcción ha secado, y es aplicable en situaciones en que sean insignificantes los fenómenos de alteración de conductividad térmica con la humedad, la liberación y absorción de calor, alteración de las propiedades de los materiales con la humedad, succión capilar y transferencia de humedad líquida en los materiales, circulación de aire a través de grietas, y la capacidad higroscópica en los materiales. Me resulta extraño que la misma norma establezca que el método no debe ser utilizado para la comprobación de la existencia de condensaciones, sino solamente como método comparativo de diferentes soluciones constructivas o condiciones ambientales. Más recientemente, con la norma EN 15026 de 2007, se ha introducido una alteración en el método de verificación. Mientras que en base a la norma 13788 la verificación se realiza en régimen estacionario, y solamente considerando algunas propiedades de los materiales como la resistencia térmica (R) y el coeficiente de resistencia a la difusión de vapor de agua (μ), la norma EN 15026, determina que se realice en régimen variable y que otros fenómenos físicos sean considerados. Con respecto a la temperatura, el almacenamiento de calor en materiales secos o húmedos, la transferencia de calor con la transmitancia térmica dependiente de la cantidad de agua presente en los materiales, transferencia de calor latente por difusión de vapor de agua con cambio de fase. Con respecto a la humedad, el almacenamiento de humedad por adsorción y desorción de vapor de agua y fuerzas capilares. Transporte de humedad por difusión de vapor de agua, transporte de agua líquida por difusión de superficie y conducción capilar. 3 Barreras de vapor Las barreras de vapor se caracterizan por una reducida permeancia al vapor, que de acuerdo con la normativa española NBE 79 es inferior a 0,1g /MNs o resistencia superior a 10 MNs/g. (o permeancia inferior a 1,152 g/mmHg, o resistencia al vapor mayor que 0,86 mmHg∙m2∙día /g). Esta permeancia al vapor corresponde a una capa de aire de difusión equivalente (Sd) de 215 cm o 2,15 metros. XXXV Todos los materiales pueden alcanzar estos valores de resistencia al vapor siempre que se utilicen con grandes espesores, pero los que más interesan son los que puedan tener esa característica con pequeños espesores. Existen otras clasificaciones, como la del CSTC de la Bélgica que divide los materiales de acuerdo a su permeancia al vapor. Están definidas 4 categorías de barreras de vapor E1, E2, E3, E4. La categoría E1 para los materiales con - Sd entre 2 y 5 metros, E2 – con Sd entre 5 y 25 metros y 3 - con Sd entre 25 y 200 metros y finalmente E4 para valores de Sd superiores a 200 metros. Estos materiales pueden ser de diferentes tipos, y con diferentes aplicaciones. Las pinturas al esmalte o emulsiones bituminosas, los films de polietileno o de aluminio, y las membranas de betún o vinílicas son algunos ejemplos de productos con estas características y que se utilizan con ese fin. Su aplicación puede realizarse en la superficie interior del cerramiento como las pinturas al esmalte o en la cámara de aire como los otros tipos mencionados anteriormente. En todo caso deben ser colocados en la parte caliente del cerramiento, por el interior del aislamiento. Las pinturas al esmalte, los barnices, o las membranas vinílicas, cuando son aplicados sobre el revestimiento interior, presentan el problema de quitar la capacidad higroscópica del revestimiento, sea de yeso, mortero de cemento o incluso de madera. Las emulsiones de betún o las membranas de betún son generalmente aplicadas en la cara exterior de la hoja interior del cerramiento, cuando existe cámara de aire, por lo que necesitan ser aplicadas por el exterior del edificio y obligan a que la ejecución de la hoja de ladrillo de fuera sea hecha también por el exterior, con las condiciones de seguridad y de costo asociadas. Los films de aluminio o de polietileno presentan problemas de aplicación como la garantía de estanquidad, por no ser continuos, y por que el sistema de fijación poder no garantizarla. Las soluciones que parecen garantizar una mejor estanquidad y menor costo son las aplicaciones de barreras de vapor continuas y aplicadas por el interior del cerramiento, como la pintura al esmalte. Sin embargo, como ya se ha comentado con anterioridad, pueden reducir la capacidad higroscópica de los cerramientos y la inercia higroscópica de las construcciones. 4 La importancia de la capacidad higroscópica El agua actúa como un pequeño imán y es atraída por varios materiales en estado líquido o gaseoso. Muchos materiales son capaces de contener moléculas de vapor de aire, llamándose este fenómeno adsorción y ocurre en los materiales llamados hidrófilos. La capacidad de los materiales de variar su contenido de humedad con la humedad relativa del aire se llama capacidad higroscópica. La capacidad higroscópica de los materiales de revestimiento es importante por permitir la adsorción y desadsorción de agua en estado de vapor y así permitir la regulación de la humedad del ambiente interior, adsorbiendo cuando la humedad relativa del aire es elevada y desorbiendo cuando la humedad relativa es baja. De acuerdo con los datos del Fraunhofer Institut y para valores de humedad por unidad de volumen (Kg/m3), el revestimiento de yeso no es el producto que presenta una mejor capacidad higroscópica, comparado por ejemplo con los revocos de cemento. Para valores de humedad relativa del 50%, el revestimiento de yeso presenta valores de contenido de humedad de 3,6 g/m3, el revoco de cemento 9,66 g/m3, y el revestimiento acrílico de acabado de 2,7 g/m3. Para una humedad relativa del 95% y por tanto aún en el rango higroscópico, los valores para los mismos morteros son de 19 g/m3, 113,19 g/m3 y 34,55 g/m3, respectivamente. Para una humedad relativa del 100% y por tanto en el rango por encima de la saturación capilar, en la saturación máxima, los valores son de 400 g/m3, 280 g/m3 y 100 g/m3 respectivamente. Solo para valores de humedad relativa del 100% es posible verificar un contenido de humedad del revestimiento de yeso superior al del revoco de cemento. La inercia higroscópica permite que las variaciones de la humedad relativa del aire en una habitación, tenga una atenuación de los picos diarios pudiendo contribuir para el confort y para la disminución de los costos energéticos a él asociados. Puede también XXXVII tener un efecto a largo plazo traducido en alteraciones de las medias mensuales en los meses de inicio y de fin de ciclos estacionales, de variación de la humedad relativa. Estos son los fundamentos que han llevado al desarrollo de soluciones de revestimientos continuos interiores con características de barrera de vapor e higroscopicidad. ESTUDIO EXPERIMENTAL El estudio experimental consta de dos partes: - permeabilidad al vapor e capacidad higroscópica de materiales y productos - adherencia de revestimientos predosificados de yeso a capas impermeables al vapor. 1- Materiales y métodos I. Permeabilidad al vapor y capacidad higroscópica de materiales y productos El desarrollo de esta solución de revestimiento ha comenzado por el estudio de las características de permeabilidad al vapor y de capacidad higroscópica de los materiales y productos utilizados en los revestimientos continuos de cerramientos. Los primeros ensayos han sido realizados en el periodo de docencia del Curso de Doctorado en la asignatura de Aplicaciones Actuales de Conglomerantes Tradicionales, del Profesor Luis de Villanueva Domínguez, y han permitido el primer contacto con los métodos de ensayos y el conocimiento de las normas aplicables. En el trabajo de investigación realizado en la asignatura, se ha ensayado la permeabilidad al vapor e la capacidad higroscópica de morteros de revestimiento, de conglomerantes tradicionales Los materiales y productos ensayados, en ese primer trabajo experimental, han sido, mortero de escayola y cal aérea, yeso de proyectar, mortero de cal aérea y arena, mortero de cal hidráulica y arena, mortero de cemento y arena, mortero de cemento y arena con aditivos impermeabilizantes y morteros impermeabilizantes a base de cemento. En el periodo de investigación del Curso de Doctorado han sido ensayados otros materiales y productos. También con la orientación del Catedrático Luis de Villanueva Domínguez se ha desarrollado el Trabajo Tutelado en el cual se han ensayado materiales y productos de revestimiento continuo de conglomerantes no tradicionales, yesos puros con adiciones naturales, yesos de proyectar con adiciones sintéticas y capas peliculares de diferente origen. De los productos de origen sintético se ha ensayado la permeabilidad al vapor y capacidad higroscópica de estucos acrílicos de relleno (Matesica), estucos acrílicos de acabado (Matesica), mortero sintético de relleno/acabado para exterior o interior (Matesica), mortero sintético de acabado para exterior (Weber), mortero epoxi de relleno y acabado para interior (Gobbetto), morteros de agarre (BASF y Matesica), mortero de reparación de cemento (Weber), mortero de reparación de yeso (Weber). Se ha ensayado también la permeabilidad al vapor de capas peliculares continuas de diferentes orígenes, como aceite de linaza hervido, cera de abeja diluida en esencia de trementina, emulsión bituminosa (Shell), emulsión bituminosa con polímero (BASF), imprimación epoxídica con cemento (BASF), pintura epoxídica (Matesica), pintura anticarbonatación (BASF), estuco Veneciano de cal (La Calce de la Brenta), estuco Veneciano sintético (Gobbetto) e impermeabilización líquida (Weber). Han sido ensayadas también la permeabilidad al vapor y la capacidad higroscópica de yesos puros (portugueses) sin adiciones y con aditivos naturales (cal aérea hidratada 1/1, cola de pescado y cola de conejo). Los yesos de proyectar han sido ensayados sin adiciones y con adiciones de látex SBR (BASF), acrílico (Weber) y epoxi (Matesica). II Adherencia de revestimientos predosificados de yeso a capas impermeables al vapor Como ya se ha dicho anteriormente, hasta una humedad relativa por debajo del 95%, el revestimiento de yeso tiene una capacidad higroscópica inferior al revoco de cemento y al revestimiento acrílico de acabado. Se ha elegido, de acuerdo con el profesor Luis de Villanueva Domínguez, este producto como capa higroscópica del esquema de revestimiento. Las cuestiones de tradición cultural, de abundancia de materia prima en la Península Ibérica, esencialmente en España, y los menores costos energéticos asociados a su fabricación, determinan el origen de esta decisión. Para la producción de 1 m3 de XXXIX cemento son necesarios 12600 MJ, mientras que para 1 m3 de yeso son necesarios solamente 2640 MJ. Pero el yeso presenta otras características mejores que los morteros de cemento, como la menor densidad, menor conductividad térmica y menor efusividad térmica. La mejor capacidad de absorción de agua en la fase líquida por capilaridad, que el mortero de cemento, es otra de las ventajas de los revestimientos de yeso que en situaciones de condensación superficial interior puede evitar el goteo. El paso siguiente ha sido ensayar la adherencia de un revestimiento predosificado de yeso a las capas que han presentado característica de barrera de vapor con espesores hasta 6 mm, así como en aquellas en que los fabricantes recomiendan menores espesores, como el mortero epoxi de relleno y acabado y el mortero sintético de acabado. Se ha utilizado un revestimiento de yeso predosificado de aplicación manual, portugués. La elección de un producto de aplicación manual se ha debido a la dificultad de obtener la aplicación por proyección en el local donde se han hecho las muestras, el taller de la Faculdade de Arquitectura da Universidade Técnica de Lisboa. Se ha aplicado con espesor de 2 cm sobre las capas de aceite de linaza hervido, emulsión de bituminosa, imprimación epoxídica con cemento, pintura epoxídica, impermeabilización líquida, mortero epoxi de relleno y acabado, mortero sintético de acabado. Verificando que ninguno de los materiales que han presentado características de barrera de vapor hasta espesores de 0,6 mm proporcionaban una adherencia al revestimiento de yeso capaz de garantizar el cumplimento de todas las exigencias, se ha decidido elegir los materiales impermeables al vapor más finos y con diferentes orígenes para desarrollar los estudios de mejora de la adherencia. Ha sido necesario desarrollar un conjunto de experimentos con el objetivo de incrementar la adherencia del revestimiento de yeso a estos soportes no absorbentes. La adherencia de los revestimientos continuos de conglomerantes tradicionales, como el yeso sobre soportes absorbentes, se basa en una adherencia mecánica. En este caso los cristales de yeso se van a formar dentro de la red capilar del ladrillo cerámico o del hormigón. Aplicando una barrera de vapor sobre ellos, se elimina esta posibilidad por aplicarse una barrera entre la estructura porosa del soporte (ladrillo u hormigón) y el revestimiento de yeso. Se tiene que producir otro tipo de adherencia, la adherencia química. Esta adherencia se basa en los enlaces químicos, de tipo secundario, como los puentes de hidrógeno o las fuerzas bipolares de Van der Waals. Aunque este tipo de adherencia es menor que la que se produce sobre soportes absorbentes, puede alcanzar valores considerables. Los materiales impermeables al vapor elegidos han sido el aceite de linaza hervido, la emulsión bituminosa y la imprimación epoxi con cemento. A estos materiales de origen natural, artificial e sintético, han sido aplicadas capas intermedias de arena de sílice, mortero de cemento y arena, mortero de agarre y un puente de adherencia de acuerdo con las recomendaciones de Eurogypsum. La capa de arena ha sido aplicada con la última mano aún fresca, mientras que las otras capas intermedias han sido aplicadas con las capas impermeables al vapor ya secas. Las capas intermedias aplicadas han sido: - al aceite de linaza hervido - arena de sílice y puente de adherencia. - a la emulsión bituminosa - arena de sílice, mortero de cemento y arena 1:1 y puente de adherencia - a la capa de imprimación epoxídica con cemento - arena de sílice, mortero de agarre y puente de adherencia. El revestimiento de yeso utilizado ha sido un yeso predosificado de aplicación manual, de origen español, y se ha aplicado con un espesor de 2 centímetros. Para la capa intermedia de puente de adherencia y siguiendo la recomendación del fabricante, se ha añadido un látex de SBR (con relación látex/agua de 1/2) al revestimiento de yeso. Otra experimentación realizada ha sido la adición del látex SBR al revestimiento de yeso y su aplicación directamente sobre cada una de las capas impermeables al vapor, y a cada una de las capas intermedias aplicadas sobre las capas impermeables al vapor. XLI La aplicación del látex en las proporciones de 1/2, de relación látex/agua, puede cambiar algunas propiedades del revestimiento de yeso en pasta, en relación a su aplicación, o tiempo de inicio o fin de fraguado, e incluso tener influencia en el costo final del revestimiento. Puesto que la adherencia del revestimiento de yeso con adición del látex a la capa intermedia de puente de adherencia ha sido muy superior a las exigencias más estrictas, se ha realizado un ensayo, pero sin la adición del látex. Este ensayo se ha realizado aplicando el revestimiento de yeso sobre las capas de puente de adherencia anteriormente aplicadas sobre las capas impermeables al vapor, descritas con anterioridad. Se ha aplicado ahora un revestimiento de yeso predosificado también de aplicación manual, pero de origen portugués. Para garantizar el cumplimiento integral de la exigencia de adherencia de 0,5 MPa, se ha hecho otro ensayo con una menor adición de látex de SBR al yeso predosificado. Se ha aplicado el látex con una relación látex/agua de 1/3 y 1/4. 2 Resultados y discusión I. Permeabilidad al vapor y capacidad higroscópica de materiales y productos En el primer ensayo de permeabilidad al vapor se concluyó que ninguno de los productos ensayados puede constituir barrera de vapor en espesores hasta 2 cm. y que lo que ha presentado mayor resistividad al vapor ha sido el mortero impermeabilizante de capa fina. Tendría que tener un espesor próximo a los 14,12 cm para poder constituir barrera de vapor. En los ensayos de capacidad higroscópica, realizados solamente para humedades relativas del 50% y 95% a temperaturas de 23ºC, el mortero de escayola y cal aérea y el yeso de proyectar han presentado una capacidad higroscópica bastante elevada, pero como el secado ha sido realizado a 100º C (lo que no es la temperatura adecuada para los productos a base de yeso por poder éstos sufrir una deshidratación y un cambio en su constitución) los resultados no pueden ser considerados. El mortero de impermeabilización de capa fina también ha presentado una buena capacidad higroscópica, mejor que el mortero de cemento y arena, y éste mejor que el mortero de cal hidráulica y arena, y éste mejor que el mortero de cal aérea y arena. La adición de aditivos impermeabilizantes no ha cambiado significativamente esta característica. Como resultado de los segundos ensayos se ha concluido que existen diferentes materiales y productos que pueden constituir barrera de vapor con diferentes espesores. Los productos estuco acrílico de relleno, estuco sintético de acabado, mortero sintético de acabado para exterior, mortero epoxi de relleno y acabado, han presentado características de barrera de vapor con espesores hasta 2 cm, sin embargo, son espesores superiores a los recomendados por los fabricantes de los productos. De los productos peliculares, han constituido barrera de vapor, el aceite de linaza hervido (con valores muy próximos), la emulsión bituminosa sin polímero, la imprimación epoxídica con cemento, la pintura epoxídica y la impermeabilización líquida. Todos los demás productos ensayados no han presentado esa característica cuando aplicados en tres manos. Los yesos puros con adiciones naturales y los yesos de proyectar con adiciones sintéticas no han presentado características de barrera de vapor en espesores hasta dos centímetros. El mejor resultado ha sido el del yeso puro con adición de cola de pescado, que ha presentado característica de barrera de vapor con espesor de 16,32 cm. En cuanto a la capacidad higroscópica de los materiales y productos, el ensayo ha sido repetido recientemente con las mismas muestras, porque en el ensayo realizado para el Trabajo Tutelado no fue posible una correcta caracterización. En ese ensayo solo se han obtenido los valores de capacidad higroscópica para valores de humedad del 50 % ± 3 a temperatura de 23 ºC ± 2 por no disponerse de los medios necesarios para un estudio más completo. En el ensayo realizado recientemente en el Laboratório Nacional de Engenharia Civil de Portugal (LNEC), se ha utilizado una cámara climática, con control de temperatura y humedad relativa, y se han obtenido los valores de capacidad higroscópica para valores de humedad relativa del 25%, 50%, 75% y 95% a temperatura constante de 23º C. XLIII En ese último ensayo se ha verificado que para humedades relativas del 50 %, los yesos predosificados de aplicación manual, portugueses y españoles, tienen diferentes capacidades higroscópicas. Los yesos españoles han presentado una capacidad higroscópica de 0,2 % y el portugués de 0,05 %. La adición de látex de SRB no ha reducido la capacidad higroscópica del yeso predosificado español. Los valores se han mantenido próximos para las relaciones látex/agua de 1/4, 1/3 y 1/2, con 0,2 %. Para valores de capacidad higroscópica por volumen se ha verificado que la adición de látex incrementa la capacidad higroscópica, estableciéndose que los valores para el yeso español sin látex han sido de 2,2 g/dm3 y para los yesos con adición de látex han sido de cerca de 2,5 g/dm3. Para este valor de humedad relativa otros productos han presentado mayor capacidad higroscópica, como el yeso puro con cola de pescado con 5,1 g/dm3.Para morteros ensayados con espesores de 0,6 cm, el mortero de reparación de yeso ha presentado un valor de capacidad higroscópica de 4,1 g/dm3 y el mortero de agarre (BASF) ha presentado el valor de 4,6 g/dm3. Para valores de humedad relativa del 95 %, la capacidad higroscópica presentada por el yeso predosificado español ha sido de 1 % y por el portugués ha sido de 0,27 %. La adición de látex tampoco aquí ha alterado la capacidad higroscópica. Las pequeñas diferencia registradas pueden deberse al diferente tiempo en que se han realizado los pesajes, por existir ya mucha agua libre. Para valores de capacidad higroscópica por volumen se ha verificado que la adición de látex incrementa la capacidad higroscópica, estableciéndose que los valores para el yeso español sin látex han sido de 10,6 g/dm3 y para los yesos con adición de látex han sido de cerca de 11,60 g/dm3 para látex/agua de 1/4, 13,77 g/dm3 para látex/agua de 1/3 y 12,20 g/dm3 para látex/agua de 1/2. Para este valor de humedad relativa, otros productos han presentado mayor capacidad higroscópica, y superiores al yeso predosificado de aplicación manual español. El yeso predosificado de proyectar con adición de látex acrílico (Weber), con 14,1 g/dm3, el yeso puro con cola de pescado con 17,8 g/dm3, el yeso puro cal aérea hidratada con 18,3 g/dm3. Para los morteros ensayados con espesores de 0,6 cm, el mortero de agarre Matesica con valor 17,7 g/dm3, el mortero de reparación de yeso con valores de 31,2 g/dm3 y el mortero de agarre BASF con valores de 48,8 g/dm3. Este ultimo valor debería ser verificado por haberse podido producir un error en la cantidad de agua suministrada. XLIV II Adherencia de revestimientos predosificados de yeso a capas impermeables al vapor Realizado el ensayo de adherencia del revestimiento de yeso predosificado aplicado sobre las capas que han constituido barrera de vapor con espesor hasta 6 mm, se ha verificado que los valores requeridos por la norma europea EN 13279 de 2005, con valores de adherencia ≥ 0,1 MPa o rotura cohesiva por el soporte, solo no han sido satisfechos por la pintura epoxídica y por el revestimiento sintético de acabado. Todavía los valores de adherencia no han alcanzado los valores exigidos por las exigencias complementarias del Laboratório Nacional de Engenharia de Portugal (LNEC) o las exigencias españolas. Las exigencias del LNEC, determinan una adherencia ≥ 0,5 MPa, o una ruptura cohesiva. Las exigencias españolas determinan que la adherencia debe ser determinada por la rotura del revestimiento. La solución de revestimiento que mejor resultado ha presentado ha sido la del revestimiento predosificado de yeso aplicado sobre la capa de aceite de linaza hervido, con una adherencia de 0,324 MPa. También se ha ensayado la aplicación de una capa intermedia de mortero de agarre entre las capas impermeables al vapor de imprimación epoxídica y pintura epoxídica. Los resultados obtenidos han sido de 0,21 MPa y de 0,25 MPa respectivamente. De los valores obtenidos en el ensayo de adherencia del revestimiento de yeso predosificado a las capas peliculares elegidas que han constituido barrera de vapor cuando aplicadas en tres manos, solo algunas de las soluciones con adición de látex al yeso han cumplido las exigencias más estrictas. Éstas han sido las capas impermeables al vapor constituidas por emulsión bituminosa e imprimación epoxi con cemento. Las capas intermedias de arena de sílice sobre la emulsión bituminosa y sobre la imprimación epoxi también han cumplido. Las capas intermedias de mortero de cemento sobre emulsión bituminosa, y mortero de agarre sobre imprimación epoxi con cemento también han cumplido. El puente de adherencia sobre emulsión bituminosa e imprimación epoxídica con cemento, han presentado valores muy elevados de adherencia del revestimiento de XLV yeso. Los valores obtenidos han sido tres veces superiores a las exigencias más estrictas. Los valores obtenidos en el ensayo de adherencia del revestimiento de yeso predosificado sobre el puente adherencia aplicado sobre las capas peliculares impermeables al vapor han sido muy cercanos a la exigencia del Laboratório Nacional de Engenharia Civil de Portugal. Presentan una media de 0,456 MPa. Los valores más bajos han sido para la solución de capa impermeable al vapor constituida por aceite de linaza hervido, con el valor de 0,418 MPa. El valor más elevado ha sido para la solución de capa impermeable al vapor constituida por imprimación epoxídica con cemento, con el valor de adherencia de 0,484 MPa. Los valores obtenidos con las capas impermeables al vapor constituidas por aceite de linaza hervido han presentado roturas siempre adhesivas, o en su capa, pero con valores muy diferentes. Los valores de mayor adherencia se han producido con las capas de aceite con mayor tiempo de secado. En el ensayo de adherencia del revestimiento de yeso predosificado con adición de látex con relación agua/látex de 1/3 y 1/4, aplicado sobre el puente de adherencia, aplicado sobre la capa de imprimación epoxi se ha verificado que la solución con relación látex/agua de 1/4 ha superado la exigencia de 0,5 MPa en un 50 %. Esto resultado quiere decir que es posible aplicar una relación de látex/agua aún inferior. PRINCIPALES CONCLUSIONES Como principales conclusiones del estudio experimental podemos decir que es posible obtener un revestimiento continuo interior impermeable al vapor e higroscópico. Se pueden obtener con capas impermeables al vapor de aceite de linaza hervido (debidamente seco), emulsión bituminosa o con imprimación epoxídica con cemento, aplicadas directamente sobre el ladrillo. Como capa higroscópica se puede aplicar un revestimiento de yeso predosificado, no obstante sea menos higroscópico que un revestimiento de mortero de cemento y arena (hasta humedades relativas del 95%). La adherencia entre la capa impermeable al vapor y el revestimiento de yeso predosificado, puede conseguirse con un puente de adherencia entre las dos capas anteriormente descritas. Si la adherencia del yeso no fuera capaz de cumplir las exigencias más estrictas (0,5 MPa) puede añadirse un látex de SBR al yeso en una relación de látex agua de 1/4. Esa adición permite una adherencia un 50 % superior a las exigencias más estrictas, por lo que se pueden ensayar relaciones aún menores de L/A. Estas adiciones no restan capacidad higroscópica al revestimiento, pudiendo incluso incrementarla (para humedades relativas del 25% al 95%) con beneficio para la inercia higroscópica del edificio donde fuese aplicado. Con respecto a la influencia de la solución de revestimiento propuesta en el riesgo de condensaciones intersticiales, se puede decir que no ha sido posible observar una diferencia significativa en las simulaciones realizadas, entre la aplicación del revestimiento y su no aplicación. Las simulaciones han sido realizadas con la aplicación informática Wufi 5 Pro, que respeta la normativa más reciente relativa a las condensaciones intersticiales. Comparando con la solución tradicional de aplicación de barrera de vapor en la cámara de aire, tampoco se han verificado grandes diferencias. Cabe destacar que esta solución tradicional no ha presentado diferencias en relación a la no aplicación de barrera de vapor. Estas simulaciones contradicen lo comúnmente establecido hasta ahora, que es considerar que la aplicación de barreras de vapor en la parte caliente del cerramiento reduce considerablemente el riesgo de condensaciones intersticiales. Estas simulaciones han sido realizadas considerando que la fracción de lluvia adherida al cerramiento seria la correspondiente a la solución constructiva y a su inclinación. En la definición del componente pared del cerramiento no existe la posibilidad de colocar la capa de pintura exterior. Considerando la hipótesis de que con la capa de pintura exterior, no existe absorción de agua de lluvia, en esta solución constructiva, los valores obtenidos han cambiado considerablemente. El contenido total de agua en el elemento ha sido menor en la solución con barrera de vapor en el revestimiento (pico máximo de 1 Kg/m2), seguido de la solución de barrera de vapor en la cámara de aire (pico máximo de 1,4 Kg/m2) y esto menor que la solución sin barrera de vapor (pico máximo de 1,8 Kg/m2). El contenido de agua en la lana de roca también ha sido menor en la solución con barrera de vapor en el revestimiento interior (pico máximo de 1,15 %), seguido de la solución con barrera de vapor en la cámara de aire (pico máximo de 1,5 %). y esto menor que la solución sin barrera de vapor (pico máximo de 1,62 %).
Resumo:
Esta investigación se ha dividido en tres etapas, primero se analizó el efecto de los hidrocarburos (crudos liviano, extrapesado y gasoil) a razón de dosis bajas 2 y 4 % p/p, y altas 30, 40 y 50 % p/p en un suelo arenoso de la Mesa de Guanipa en Venezuela, empleando técnicas analíticas e instrumentales para su caracterización, también se determinó el efecto que tienen estos contaminantes sobre la actividad biológica del suelo durante 29 días de incubación. La segunda fase consistió en aplicar un tratamiento térmico a una velocidad máxima de calentamiento de 0,33 ºC/min por 2h, a muestras de suelo de la zona central de España, contaminado con gasoil a razón de 2, 4, 10, 20, 50 % p/p. En la última fase se utilizó una propuesta de la deshalogenación química, en suelos contaminados con 413, 95, 14,2 ppm de askarel, y en aceites minerales con 363, 180, 100, 94 ppm de askarel. Los resultados mostraron, que el efecto que causan los hidrocarburos en el suelo dependen de las características propias del suelo, su entorno, concentración y composición del hidrocarburo, con respecto a las curvas acumuladas de mg C - CO2 /100 g de suelo, se observó que los hidrocarburos inhiben la biomasa microbiana en los suelos. Para el tratamiento térmico los resultados han mostrado una eliminación del gasoil en un 94,11 % en la muestra que contenía 2% gasoil, 95,85 % para la muestra del 4 %, 98,48 % para la muestra del 10 %, 99,45 % para la del 20 % y finalmente 99,51 % para la del 50 % gasoil, se observó que la adición del gasoil al suelo produce cambios significativos con respecto al testigo, luego del tratamiento térmico la fracción de la materia orgánica en el suelo disminuyó significativamente. La deshalogenación química propuesta en aceites dieléctricos como en suelos resultó satisfactoria. En aceites han resultado 8 tratamientos con eliminaciones del cloro por encima del 50 % y en suelos 4 tratamientos con 50 % de eliminación. Además se ha experimentado con la urea para el caso del suelo contaminado dando eliminación de un 80,4 % del cloro, y con etanol como agente oxidante en los aceites dieléctricos, resultando un 40 % de eliminación.
Resumo:
El principal objetivo de este proyecto es evaluar la influencia del contenido del estuco del papel en el reciclado del mismo (desintegrado y destintado) y en la calidad del producto final a obtener (el papel). Para ello se utilizarán calidades de papel estucado o sin estucar, impresas o no. Con el fin de evaluar el proceso de reciclado se han propuesto los siguientes objetivos parciales: - Evaluar la cantidad de rechazos o paquetes de fibras obtenidos tras la desintegración de las distintas calidades de papel seleccionadas. - Evaluar si existen diferencias en el consumo de energía durante la desintegración en función de si el papel está estucado o no, y en el caso de estar estucado si existen diferencias de consumo en función de la cantidad de estuco aplicado. - Evaluar el rendimiento de las distintas calidades de papel seleccionadas durante el reciclado de las mismas. Los objetivos relacionados con el producto son: - Estudiar la variación del contenido en fibras y en minerales de las pastas obtenidas durante el proceso de reciclado, así como de los lodos de destintado. - Estudiar la facilidad de la eliminación de la tinta en los papeles en función de si están o no estucados. - Estudiar la evolución de las propiedades físico-mecánicas y ópticas del papel producido reciclado, a partir de las pastas desintegradas y destintadas.
Resumo:
En el presente trabajo se efectuó un estudio sobre la financiación a las actividades de Investigación, Desarrollo e Innovación Tecnológica (I+D+i) de las pequeñas y medianas industrias (PYMI) del estado Bolívar, Venezuela. El Estado Bolívar se ha caracterizado por poseer una gran riqueza que se manifiesta en las reservas de los principales recursos minerales tales como oro, diamante, hierro y bauxita, estos dos últimos han permitido la instalación de empresas básicas para el desarrollo de la industria siderúrgica y del aluminio.Además, cuenta con el parque industrial metalmecánico más grande del país concentrando un gran número de Pequeñas y Medianas Industrias (PYMIS). Sin embargo, no se ha desarrollado integralmente, debido a que las PYMI no han orientando sus esfuerzos, en desarrollar e innovar en nuevos productos o en mejoras de procesos debido a la poca capacidad y baja inversión en I+D+i. Los resultados de este trabajo indican que la PYMI enfrenta una serie de problemas que afectan negativamente las actividades de I+D+i debido a la dificultad para obtener financiamiento ya que el sector financiero no posee los instrumentos adecuados para atender a las PYMI de acuerdo con su tamaño y especificidad, la falta de apoyo de las grandes empresas de la zona para la sustitución de las importaciones y la falta asistencia de asociaciones profesio nales y de otras instituciones u organismos. Finalmente, se proponen estrategias para mejorar las políticas de financiamiento a las actividades de I+D+i en el estado Bolívar.
Resumo:
El Estado Bolívar cuenta con una superficie de 238.000 Kms2 se encuentra ubicado al sur-este de Venezuela y su capital es Ciudad Bolívar. La región se ha caracterizado a nivel mundial por poseer una gran riqueza que se manifiesta en las reservas de los principales recursos minerales tales como oro, diamante, manganeso, hierro y bauxita, estos dos últimos han permitido la instalación de empresas básicas para el desarrollo de la industria siderúrgica y del aluminio, ubicados en Ciudad Guayana, Además cuenta con el parque industrial metalmecánico más grande del país concentrando un gran numero de Pequeñas y Medianas Industrias (PYMIS). En tal sentido el sector productivo de Guayana no se ha desarrollado integralmente, debido a que no ha orientando sus esfuerzos, en desarrollar e innovar en nuevos productos o mejoras de procesos debido a la poca capacidad y baja inversión en Investigación y Desarrollo Tecnológico (I&DT), para transformar nuestras materias primas y generar productos competitivo con un alto valor agregado. El presente proyecto se planteo como objetivo principal Diseñar Estrategias para Desarrollar las Capacidades y Potencialidades Endógenas, de los Centros y Laboratorios de Investigación y Desarrollo, para la Vinculación y Fortalecimiento de las PYMIS de Manufacturas en las Áreas de Materiales y Mecánica.