548 resultados para MALDI-TOFMS
Resumo:
Endometriosis is a common gynaecological disease with symptoms of pelvic pain and infertility which affects 7-10% of women in their reproductive years. Activation of an oncogenic allele of Kirsten rat sarcoma viral oncogene homologue (KRAS) in the reproductive tract of mice resulted in the development of endometriosis. We hypothesized that variation in KRAS may influence risk of endometriosis in humans. Thirty tagSNPs spanning a region of 60.7 kb across the KRAS locus were genotyped using iPLEX chemistry on a MALDI-TOF MassARRAY platform in 959 endometriosis cases and 959 unrelated controls, and data were analysed for association with endometriosis. Genotypes were obtained for most individuals with a mean completion rate of 99.1%. We identified six haplotype blocks across the KRAS locus in our sample. There were no significant differences between cases and controls in the frequencies of individual single-nucleotide polymorphisms (SNPs) or haplotypes. We also developed a rapid method to screen for 11 common KRAS and BRAF mutations on the Sequenom MassARRAY system. The assay detected all mutations previously identified by direct sequencing in a panel of positive controls. No germline variants for KRAS or BRAF were detected. Our results demonstrate that any risk of endometriosis in women because of common variation in KRAS must be very small.
Resumo:
The superior frontal cortex (SFC) is selectively damaged in chronic alcohol abuse, with localized neuronal loss and tissue atrophy. Regions such as motor cortex show little neuronal loss except in severe co-morbidity (liver cirrhosis or WKS). Altered gene expression was found in microarray comparisons of alcoholic and control SFC samples [1]. We used Western blots and proteomic analysis to identify the proteins that also show differential expression. Tissue was obtained at autopsy under informed, written consent from uncomplicated alcoholics and age- and sex-matched controls. Alcoholics had consumed 80 g ethanol/day chronically (often, 200 g/day for 20 y). Controls either abstained or were social drinkers ( 20 g/day). All subjects had pathological confirmation of liver and brain diagnosis; none had been polydrug abusers. Samples were homogenized in water and clarified by brief centrifugation (1000g, 3 min) before storage at –80°C. For proteomics the thawed suspensions were centrifuged (15000g, 50 min) to prepare soluble fractions. Aliquots were pooled from SFC samples from the 5 chronic alcoholics and 5 matched controls used in the previous microarray study [1]. 2-Dimensional electrophoresis was performed in triplicate using 18 cm format pH 4–7 and pH 6–11 immobilized pH gradients for firstdimension isoelectric focusing. Following second-dimension SDS-PAGE the proteins were fluorescently stained and the images collected by densitometry. 182 proteins differed by 2-fold between cases and controls. 141 showed lower expression in alcoholics, 33 higher, and 8 were new or had disappeared. To date 63 proteins have been identified using MALDI-MS and MS-MS. Western blots were performed on uncentrifuged individual samples from 76 subjects (controls, uncomplicated alcoholics and cirrhotic alcoholics). A common standard was run on every gel. After transfer, immunolabeling, and densitometry, the intensities of the unknown bands were compared to those of the standards. We focused on proteins from transcripts that showed clear differences in a series of microarray studies, classified into common sets including Regulators of G-protein Signaling and Myelin-associated proteins. The preponderantly lower level of differentially expressed proteins in alcoholics parallels the microarray mRNA analysis in the same samples. We found that mRNA and protein expression do not frequently correspond; this may help identify pathogenic processes acting at the level of transcription, translation, or post-translationally.
Resumo:
We have carried out a discovery proteomics investigation aimed at identifying disease biomarkers present in saliva, and, more specifically, early biomarkers of inflammation. The proteomic characterization of saliva is possible due to the straightforward and non-invasive sample collection that allows repetitive analyses for pharmacokinetic studies. These advantages are particularly relevant in the case of newborn patients. The study was carried out with samples collected during the first 48 hours of life of the newborns according to an approved Ethic Committee procedure. In particular, the salivary samples were collected from healthy and infected (n=1) newborns. Proteins were extracted through cycles of sonication, precipitated in ice cold acetone, resuspended and resolved by 2D-electrophoresis. MALDI TOF/TOF mass spectrometry analysis was performed for each spot obtaining the proteins’ identifications. Then we compared healthy newborn salivary proteome and an infected newborn salivary proteome in order to investigate proteins differently expressed in inflammatory condition. In particular the protein alpha-1-antitrypsin (A1AT), correlated with inflammation, was detected differently expressed in the infected newborn saliva. Therefore, in the second part of the project we aimed to develop a robust LC-MS based method that identifies and quantifies this inflammatory protein within saliva that might represent the first relevant step to diagnose a condition of inflammation with a no-invasive assay. The same LC-MS method is also useful to investigate the presence of the F allelic variant of the A1AT in biological samples, which is correlated with the onset of pulmonary diseases. In the last part of the work we analysed newborn saliva samples in order to investigate how phospholipids and mediators of inflammation (eicosanoids) are subject to variations under inflammatory conditions and a trend was observed in lysophosphatidylcholines composition according to the inflammatory conditions.
Resumo:
Plasma α-tocopherol (AT) concentrations are inversely related to cardiovascular (CV) risk; however, intervention studies with AT have failed to show any consistent benefit against CV disease (CVD). Proteomics offers the opportunity to examine novel effects of AT supplementation on protein expression and therefore improve our understanding of the physiological roles of AT. Thus, to investigate the effects of AT supplementation on the plasma proteome of healthy subjects we have undertaken a double-blind, randomised, parallel design supplementation study in which healthy subjects (n = 32; 11 male and 21 female) consumed AT supplements (134 or 268 mg/day) or placebo capsules for up to 28 days. Plasma samples were obtained before supplementation and after 14 and 28 days of supplementation for analysis of changes in the plasma proteome using 2-DE and MALDI-MS. Using semiquantitative proteomics, we observed that proapolipoprotein A1 (identified by MS and Western blotting) was altered at least two-fold. Using quantitative ELISA techniques, we confirmed a significant increase in plasma apolipoprotein A1 concentration following supplementation with AT which was both time and dose dependent (p < 0.01 after 28 days supplementation with 268 mg AT/day). These data demonstrate the time and dose sensitivity of the plasma proteome to AT supplementation. © 2006 Wiley-VCH Verlag GmbH & Co. KGaA.
Resumo:
Proteomics, the analysis of expressed proteins, has been an important developing area of research for the past two decades [Anderson, NG, Anderson, NL. Twenty years of two-dimensional electrophoresis: past, present and future. Electrophoresis 1996;17:443-53]. Advances in technology have led to a rapid increase in applications to a wide range of samples; from initial experiments using cell lines, more complex tissues and biological fluids are now being assessed to establish changes in protein expression. A primary aim of clinical proteomics is the identification of biomarkers for diagnosis and therapeutic intervention of disease, by comparing the proteomic profiles of control and disease, and differing physiological states. This expansion into clinical samples has not been without difficulties owing to the complexity and dynamic range in plasma and human tissues including tissue biopsies. The most widely used techniques for analysis of clinical samples are surface-enhanced laser desorption/ionisation mass spectrometry (SELDI-MS) and 2-dimensional gel electrophoresis (2-DE) coupled to matrix-assisted laser desorption ionisation [Person, MD, Monks, TJ, Lau, SS. An integrated approach to identifying chemically induced posttranslational modifications using comparative MALDI-MS and targeted HPLC-ESI-MS/MS. Chem. Res. Toxicol. 2003;16:598-608]-mass spectroscopy (MALDI-MS). This review aims to summarise the findings of studies that have used proteomic research methods to analyse samples from clinical studies and to assess the impact that proteomic techniques have had in assessing clinical samples. © 2004 The Canadian Society of Clinical Chemists. All rights reserved.
Resumo:
A major goal in vaccine development is elimination of the 'cold chain', the transport and storage system for maintenance and distribution of the vaccine product. This is particularly pertinent to liquid formulation of vaccines. We have previously described the rod-insert vaginal ring (RiR) device, comprising an elastomeric body into which are inserted lyophilised, rod-shaped, solid drug dosage forms, and having potential for sustained mucosal delivery of biomacromolecules, such as HIV envelope protein-based vaccine candidates. Given the solid, lyophilised nature of these insert dosage forms, we hypothesised that antigen stability may be significantly increased compared with more conventional solubilised vaginal gel format. In this study, we prepared and tested vaginal ring devices fitted with lyophilised rod inserts containing the model antigen bovine serum albumin (BSA). Both the RiRs and the gels that were freeze-dried to prepare the inserts were evaluated for BSA stability using PAGE, turbidimetry, microbial load, MALDI-TOF and qualitative precipitate solubility measurements. When stored at 4°C, but not when stored at 40°C/75% RH, the RiR formulation offered protection against structural and conformational changes to BSA. The insert also retained matrix integrity and release characteristics. The results demonstrate that lypophilised gels can provide relative protection against degradation at lower temperatures compared to semi-solid gels. The major mechanism of degradation at 40°C/75% RH was shown to be protein aggregation. Finally, in a preliminary study, we found that addition of trehalose to the formulation significantly reduces the rate of BSA degradation compared to the original formulation when stored at 40°C/75% RH. Establishing the mechanism of degradation, and finding that degradation is decelerated in the presence of trehalose, will help inform further development of RiRs specifically and polymer based freeze-dried systems in general.
Resumo:
The effectiveness of rapid and controlled heating of intact tissue to inactivate native enzymatic activity and prevent proteome degradation has been evaluated. Mouse brains were bisected immediately following excision, with one hemisphere being heat treated followed by snap freezing in liquid nitrogen while the other hemisphere was snap frozen immediately. Sections were cut by cryostatic microtome and analyzed by MALDI-MS imaging and minimal label 2-D DIGE, to monitor time-dependent relative changes in intensities of protein and peptide signals. Analysis by MALDI-MS imaging demonstrated that the relative intensities of markers varied across a time course (0-5 min) when the tissues were not stabilized by heat treatment. However, the same markers were seen to be stabilized when the tissues were heat treated before snap freezing. Intensity profiles for proteins indicative of both degradation and stabilization were generated when samples of treated and nontreated tissues were analyzed by 2-D DIGE, with protein extracted before and after a 10-min warming of samples. Thus, heat treatment of tissues at the time of excision is shown to prevent subsequent uncontrolled degradation of tissues at the proteomic level before any quantitative analysis, and to be compatible with downstream proteomic analysis.
Resumo:
Matrix application continues to be a critical step in sample preparation for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). Imaging of small molecules such as drugs and metabolites is particularly problematic because the commonly used washing steps to remove salts are usually omitted as they may also remove the analyte, and analyte spreading is more likely with conventional wet matrix application methods. We have developed a method which uses the application of matrix as a dry, finely divided powder, here referred to as dry matrix application, for the imaging of drug compounds. This appears to offer a complementary method to wet matrix application for the MALDI-MSI of small molecules, with the alternative matrix application techniques producing different ion profiles, and allows the visualization of compounds not observed using wet matrix application methods. We demonstrate its value in imaging clozapine from rat kidney and 4-bromophenyl-1,4-diazabicyclo(3.2.2)nonane-4-carboxylic acid from rat brain. In addition, exposure of the dry matrix coated sample to a saturated moist atmosphere appears to enhance the visualization of a different set of molecules.
Resumo:
Mass spectrometry imaging (MSI) is a powerful tool in metabolomics and proteomics for the spatial localization and identification of pharmaceuticals, metabolites, lipids, peptides and proteins in biological tissues. However, sample preparation remains a crucial variable in obtaining the most accurate distributions. Common washing steps used to remove salts, and solvent-based matrix application, allow analyte spreading to occur. Solvent-free matrix applications can reduce this risk, but increase the possibility of ionisation bias due to matrix adhesion to tissue sections. We report here the use of matrix-free MSI using laser desorption ionisation performed on a 12 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. We used unprocessed tissue with no post-processing following thaw-mounting on matrix-assisted laser desorption ionisation (MALDI) indium-tin oxide (ITO) target plates. The identification and distribution of a range of phospholipids in mouse brain and kidney sections are presented and compared with previously published MALDI time-of-flight (TOF) MSI distributions.
Resumo:
A dry matrix application for matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) was used to profile the distribution of 4-bromophenyl-1,4-diazabicyclo(3.2.2)nonane-4-carboxylate, monohydrochloride (BDNC, SSR180711) in rat brain tissue sections. Matrix application involved applying layers of finely ground dry alpha-cyano-4-hydroxycinnamic acid (CHCA) to the surface of tissue sections thaw mounted onto MALDI targets. It was not possible to detect the drug when applying matrix in a standard aqueous-organic solvent solution. The drug was detected at higher concentrations in specific regions of the brain, particularly the white matter of the cerebellum. Pseudomultiple reaction monitoring imaging was used to validate that the observed distribution was the target compound. The semiquantitative data obtained from signal intensities in the imaging was confirmed by laser microdissection of specific regions of the brain directed by the imaging, followed by hydrophilic interaction chromatography in combination with a quantitative high-resolution mass spectrometry method. This study illustrates that a dry matrix coating is a valuable and complementary matrix application method for analysis of small polar drugs and metabolites that can be used for semiquantitative analysis.
Resumo:
An initial aim of this project was to evaluate the conventional techniques used in the analysis of newly prepared environmentally friendly water-borne automotive coatings and compare them with solvent-borne coatings having comparable formulations. The investigation was carried out on microtuned layers as well as on complete automotive multi-layer paint systems. Methods used included the very traditional methods of gloss and hardness and the commonly used photo-oxidation index (from FTIR spectral analysis). All methods enabled the durability to weathering of the automotive coatings to be initially investigated. However, a primary aim of this work was to develop methods for analysing the early stages of chemical and property changes in both the solvent-borne and water-borne coating systems that take place during outdoor natural weathering exposures and under accelerated artificial exposures. This was achieved by using dynamic mechanical analysis (DMA), in both tension mode on the microtomed films (on all depths of the coating systems from the uppermost clear-coat right down to the electron-coat) and bending mode of the full (unmicrotomed) systems, as well as MALDI-Tof analysis on the movement of the stabilisers in the full systems. Changes in glass transition temperature and relative cross-link density were determined after weathering and these were related to changes in the chemistries of the binder systems of the coatings after weathering. Concentration profiles of the UV-stabilisers (UVA and HALS) in the coating systems were analysed as a consequence of migration in the coating systems in separate microtomed layers of the paint samples (depth profiling) after weathering and diffusion co-efficient and solubility parameters were determined for the UV stabilisers in the coating systems. The methods developed were used to determine the various physical and chemical changes that take place during weathering of the different (water-borne and solvent-borne) systems (photoxidation). The solvent-borne formulations showed less changes after weathering (both natural and accelerated) than the corresponding water-borne formulations due to the lower level of cross-links in the binders of the water-borne systems. The silver systems examined were more durable than the blue systems due to the reflecting power of the aluminium and the lower temperature of the silver coatings.
Resumo:
Soft ionization methods for the introduction of labile biomolecules into a mass spectrometer are of fundamental importance to biomolecular analysis. Previously, electrospray ionization (ESI) and matrix assisted laser desorption-ionization (MALDI) have been the main ionization methods used. Surface acoustic wave nebulization (SAWN) is a new technique that has been demonstrated to deposit less energy into ions upon ion formation and transfer for detection than other methods for sample introduction into a mass spectrometer (MS). Here we report the optimization and use of SAWN as a nebulization technique for the introduction of samples from a low flow of liquid, and the interfacing of SAWN with liquid chromatographic separation (LC) for the analysis of a protein digest. This demonstrates that SAWN can be a viable, low-energy alternative to ESI for the LC-MS analysis of proteomic samples.
Resumo:
Mesenchymal stem cells (MSCs) stimulate angiogenesis within a wound environment and this effect is mediated through paracrine interactions with the endothelial cells present. Here we report that human MSC-conditioned medium (n=3 donors) significantly increased EaHy-926 endothelial cell adhesion and cell migration, but that this stimulatory effect was markedly donor-dependent. MALDI-TOF/TOF mass spectrometry demonstrated that whilst collagen type I and fibronectin were secreted by all of the MSC cultures, the small leucine rich proteoglycan, decorin was secreted only by the MSC culture that was least effective upon EaHy-926 cells. These individual extracellular matrix components were then tested as culture substrata. EaHy-926 cell adherence was greatest on fibronectin-coated surfaces with least adherence on decorin-coated surfaces. Scratch wound assays were used to examine cell migration. EaHy-926 cell scratch wound closure was quickest on substrates of fibronectin and slowest on decorin. However, EaHy-926 cell migration was stimulated by the addition of MSC-conditioned medium irrespective of the types of culture substrates. These data suggest that whilst the MSC secretome may generally be considered angiogenic, the composition of the secretome is variable and this variation probably contributes to donor-donor differences in activity. Hence, screening and optimizing MSC secretomes will improve the clinical effectiveness of pro-angiogenic MSC-based therapies.
Resumo:
The thermal activation of a silica-stabilized γ-Alumina impacts positively on the oxidative dehydrogenation of ethylbenzene (EB) to styrene (ST). A systematic thermal study reveals that the transition from γ-alumina into transitional phases at 1050C leads to an optimal enhancement of both conversion and selectivity under pseudo-steady state conditions; where active and selective coke have been deposited. The effect is observed in the reaction temperature range of 450-475C at given operation conditions resulting in the highest ST yield, while at 425C this effect is lost due to incomplete O2 conversion. The conversion increase is ascribed to the ST selectivity improvement that makes more O2 available for the main ODH reaction. The fresh aluminas and catalytically active carbon deposits on the spent catalysts were characterized by gas adsorption (N 2 and Ar), acidity evaluation by NH3-TPD and pyridine adsorption monitored by FTIR, thermal and elemental analyses, solubility in CH2Cl2 and MALDI-TOF to correlate the properties of both phases with the ST selectivity enhancement. Such an increase in selectivity was interpreted by the lower reactivity of the carbon deposits that diminished the COx formation. The site requirements of the optimal catalyst to create the more selective coke is related to the higher density of Lewis sites per surface area, no mixed Si-Al Brønsted sites are formed while the acid strength of the formed Lewis sites is relatively weaker than those of the bare alumina. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Drug targeting is an active area of research and nano-scaled drug delivery systems hold tremendous potential for the treatment of neoplasms. In this study, a novel cyclodextrin (CD)-based nanoparticle drug delivery system has been assembled and characterized for the therapy of folate receptor-positive [FR(+)] cancer. Water-soluble folic acid (FA)-conjugated CD carriers (FACDs) were successfully synthesized and their structures were confirmed by 1D/2D nuclear magnetic resonance (NMR), matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS), high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), and circular dichroism. Drug complexes of adamatane (Ada) and cytotoxic doxorubicin (Dox) with FACD were readily obtained by mixed solvent precipitation. The average size of FACD-Ada-Dox was 1.5–2.5 nm. The host-guest association constant Ka was 1,639 M−1 as determined by induced circular dichroism and the hydrophilicity of the FACDs was greatly enhanced compared to unmodified CD. Cellular uptake and FR binding competitive experiments demonstrated an efficient and preferentially targeted delivery of Dox into FR-positive tumor cells and a sustained drug release profile was seen in vitro. The delivery of Dox into FR(+) cancer cells via endocytosis was observed by confocal microscopy and drug uptake of the targeted nanoparticles was 8-fold greater than that of non-targeted drug complexes. Our docking results suggest that FA, FACD and FACD-Ada-Dox could bind human hedgehog interacting protein that contains a FR domain. Mouse cardiomyocytes as well as fibroblast treated with FACD-Ada-Dox had significantly lower levels of reactive oxygen species, with increased content of glutathione and glutathione peroxidase activity, indicating a reduced potential for Dox-induced cardiotoxicity. These results indicate that the targeted drug complex possesses high drug association and sustained drug release properties with good biocompatibility and physiological stability. The novel FA-conjugated β-CD based drug complex might be promising as an anti-tumor treatment for FR(+) cancer.