980 resultados para Lower Middle Pleistocene


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mineralogical and geochemical study of samples from Sites 642, 643, and 644 enabled us to reconstruct several aspects of the Cenozoic paleoenvironmental evolution (namely volcanism, climate, hydrology) south of the Norwegian Sea and correlate it with evolution trends in the northeast Atlantic. Weathering products of early Paleogene volcanic material at Rockall Plateau, over the Faeroe-Iceland Ridge and the Voring Plateau indicate a hot and moist climate (lateritic environment) existed then. From Eocene to Oligocene, mineralogical assemblages of terrigenous sediments suggest the existence of a warm but somewhat less moist climate at that time than during the early Paleogene. At the beginning of early Miocene, climatic conditions were warm and damp. The large amounts of amorphous silica in Miocene sediment could indicate an important flux of silica from the continent then, or suggest the formation of upwelling. Uppermost lower Miocene and middle to upper Miocene clay assemblages suggest progressive cooling of the climate from warm to temperate at that time. At the end of early Miocene, hydrological exchanges between the North Atlantic and the Norwegian Sea became intense and gave rise to an important change in the mineralogy of deposits. From Pliocene to Pleistocene, the variable mineralogy of deposits reflects alternating glacial/interglacial climatic episodes, a phenomenon observed throughout the North Atlantic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicoflagellates are described from Sites 588 (middle Eocene), 591 (middle Miocene to lower Pliocene), and 594 (middle Miocene to Quaternary) in the southwest Pacific. At Sites 591 and 594 a detailed silicoflagellate zonation is possible, although there are some obvious differences arising from the latitudinal position of the sites in the silicoflagellate assemblages. Comparison between the sequences recovered at Sites 591 and 206 (Leg 21) revealed two hiatuses in the latter, but helped to establish a zonation for this area from the lower Miocene to the Pleistocene and a correlation to standard nannoplankton zones. The stratigraphic implications of the taxonomy used by various authors and the species concept presented here are discussed in detail. Special reference is made to types described by Ehrenberg and to later synonyma, because the Ehrenberg collection is the base for all subsequent descriptions and evaluations of silicoflagellate taxa. Two new genera (Neonaviculopsis, Paramesocena), two new subspecies (Dictyocha fibula subsp. asymmetrica, Neonaviculopsis neonautica subsp. praenautica), and three new forms (Dictyocha perlaevis f. pentaradiata, Distephanus speculum subsp. speculum f. nonarius, and Mesocena ? hexalitha f. heptalitha) are described from the southwest Pacific Neogene and Pleistocene. Associated sponge spicules were noted and will be described in detail in a later paper, but some are documented on Plate 13.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediments recovered from Site 765 can be divided into seven mineral associations, based on differences in clay mineralogy. These clay mineral associations correlate with the lithologic units and reflect the rift-to-drift history of the passive Australian margin. In general, the Lower to mid-Cretaceous sediments represent altered volcanic material and detrital aluminosilicates that were deposited during the early formation of the Argo Basin. The predominant clay mineral is randomly interstratified illite/smectite (I/S) that contains less than 10% illite layers. The transformation of smectite to illite is suggested by an increase in the percentage of illite layers in the basal sediments (from <10% to 40%) that corresponds to the silica transformation of opal-CT to quartz. This mixed-layered illite/smectite has an average composition of (K0.14 Na0.29 C0.07)(Al0.88 Mg0.43 Fe0.61 Ti0.06)(Si3.88 Al0.12)(O)10(OH)2. The highly smectitic composition of the I/S and its association with bentonite layers and zeolite minerals suggest that much of the I/S was derived from the alteration of volcanic material. The condensed middle to Upper Cretaceous sediments consist of palygorskite and detrital I/S that contains 30% to 60% illite layers. The condensed Paleogene sediments contain no palygorskite and are dominated by detrital clay minerals or by highly smectitic I/S associated with bentonite layers and zeolite minerals. The overlying, rapidly deposited Neogene clayey calcareous turbidites consist of three distinct clay mineral associations. Middle Miocene sediments contain palygorskite, kaolinite, and a tentatively identified mixed-layered illite/smectite/chlorite (I/S/C) or saponite. Upper Miocene sediments contain abundant sepiolite and kaolinite and lesser amounts of detrital I/S. Detrital I/S and kaolinite dominate the clay mineralogy of Pliocene and Pleistocene sediments. The fibrous, magnesium-rich clay minerals sepiolite and palygorskite appear to be authigenic and occur intimately associated with authigenic dolomite. The magnesium required to form these Mg-rich minerals was supplied by diffusion from the overlying seawater, and silica was supplied by the dissolution of associated biogenic silica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Late Aptian through middle Eocene nannofossil assemblages were recovered from a continuously cored section at Site 585. Poorly preserved assemblages of low diversity were observed in samples taken throughout both upper Aptian and/or lower Albian sandstone and mudstone and middle Cenomanian to lower Turonian claystone at the base of this section. A 70-m interval barren of nannofossils separates these poorly preserved assemblages from those recovered from an upper Campanian chalk farther uphole. This chalk marks the most significant change in carbonate deposition at this site, and deposition of interbedded zeolitic claystone and sediment of varied nannofossil content proceeded without major interruption until the early Paleocene (Fasciculithus tympaniformis Zone, CP4). A middle Eocene chalk (dated by nannofossils) unconformably overlies lower Paleocene sediment in both Holes 585 and 585A. Only a few interbeds of zeolitic claystone are present within 100 m of nannofossil-rich sediment above this unconformity. This entire interval is cautiously assigned to the Discoaster sublodoensis Zone (CP 12), which indicates a sedimentation rate almost an order of magnitude higher than expected from normal pelagic sedimentation. The most obvious feature of the assemblages examined from these cores is the amount of reworked material. Rare Nannoconus elongatus and Braarudosphaera sp. in several upper Campanian to middle Eocene samples demonstrate the contribution of pelagic material from upslope and, along with other reworked species throughout the Upper Cretaceous samples examined, provide evidence contradictory to an excursion of the calcium compensation depth to deep basinal settings in the western Pacific during the Campanian-Maestrichtian time (Thierstein, 1979). The overwhelming dominance of reworked species in all middle Eocene samples examined and the persistence of these assemblages throughout such a large thickness of sediment suggest that currents that redeposited material intensified at this time and may be associated with the formation of the lower Paleocene/middle Eocene unconformity at this site. A single surface core of calcareous ooze taken from Hole 585A dated as early Pleistocene contains abundant and well-preserved late Miocene and Pliocene species.