971 resultados para Low Dielectric-constant


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oggigiorno la ricerca di nuovi materiali per gradatori di campo da impiegarsi in accessori di cavi ha iniziato a studiare alcuni materiali nano dielettrici con proprietà elettriche non lineari con la tensione ed aventi proprietà migliorate rispetto al materiale base. Per questo motivo in questo elaborato si sono studiati materiali nanostrutturati a base di polietilene a bassa densità (LDPE) contenenti nano polveri di grafene funzionalizzato (G*), ossido di grafene (GO) e carbon black (CB). Il primo obiettivo è stato quello di selezionare e ottimizzare i metodi di fabbricazione dei provini. La procedura di produzione è suddivisa in due parti. Nella prima parte è stata utilizzatala tecnica del ball-milling, mentre nella seconda un pressa termica (thermal pressing). Mediante la spettroscopia dielettrica a banda larga (BDS) si sono misurate le componenti reali e immaginarie della permettività e il modulo della conducibilità del materiale, in tensione alternata. Il miglioramento delle proprietà rispetto al provino di base composto dal solo polietilene si sono ottenute quando il quantitativo delle nanopolveri era maggiore. Le misure sono state effettuate sia a 3 V che a 1 kV. Attraverso misurazioni di termogravimetria (TGA) si è osservato l’aumento della resistenza termica di tutti i provini, soprattutto nel caso quando la % di nanopolveri è maggiore. Per i provini LDPE + 0.3 wt% GO e LDPE + 0.3 wt% G* si è misurata la resistenza alle scariche parziali attraverso la valutazione dell’erosione superficiale dei provini. Per il provino contenente G* è stato registrato una diminuzione del 22% del volume eroso, rispetto al materiale base, mentre per quello contenente GO non vi sono state variazioni significative. Infine si è ricercata la resistenza al breakdown di questi ultimi tre provini sopra citati. Per la caratterizzazione si è fatto uso della distribuzione di Weibull. Lo scale parameter α risulta aumentare solo per il provino LDPE + 0.3 wt% G*.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparison of a constant (continuous delivery of 4% FiO(2)) and a variable (initial 5% FiO(2) with adjustments to induce low amplitude EEG (LAEEG) and hypotension) hypoxic/ischemic insult was performed to determine which insult was more effective in producing a consistent degree of survivable neuropathological damage in a newborn piglet model of perinatal asphyxia. We also examined which physiological responses contributed to this outcome. Thirty-nine 1-day-old piglets were subjected to either a constant hypoxic/ischemic insult of 30- to 37-min duration or a variable hypoxic/ischemic insult of 30-min low peak amplitude EEG (LAEEG < 5 mu V) including 10 min of low mean arterial blood pressure (MABP < 70% of baseline). Control animals (n = 6) received 21% FiO(2) for the duration of the experiment. At 72 h, the piglets were euthanased, their brains removed and fixed in 4% paraformaldehyde and assessed for hypoxic/ischemic injury by histological analysis. Based on neuropathology scores, piglets were grouped as undamaged or damaged; piglets that did not survive to 72 h were grouped separately as dead. The variable insult resulted in a greater number of piglets with neuropathological damage (undamaged = 12.5%, damaged = 68.75%, dead = 18.75%) while the constant insult resulted in a large proportion of undamaged piglets (undamaged = 50%, damaged = 22.2%, dead = 27.8%). A hypoxic insult varied to maintain peak amplitude EEG < 5 mu V results in a greater number of survivors with a consistent degree of neuropathological damage than a constant hypoxic insult. Physiological variables MABP, LAEEG, pH and arterial base excess were found to be significantly associated with neuropathological outcome. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The low-energy properties of the one-dimensional anyon gas with a delta-function interaction are discussed in the context of its Bethe ansatz solution. It is found that the anyonic statistical parameter and the dynamical coupling constant induce Haldane exclusion statistics interpolating between bosons and fermions. Moreover, the anyonic parameter may trigger statistics beyond Fermi statistics for which the exclusion parameter alpha is greater than one. The Tonks-Girardeau and the weak coupling limits are discussed in detail. The results support the universal role of alpha in the dispersion relations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Few studies have focused on the metabolic responses to alternating high- and low-intensity exercise and, specifically, compared these responses to those seen during constant-load exercise performed at the same average power output. This study compared muscle metabolic responses between two patterns of exercise during which the intensity was either constant and just below critical power (CP) or that oscillated above and below CP. Six trained males (mean +/- SD age 23.6 +/- 2.6 y) completed two 30-minute bouts of cycling (alternating and constant) at an average intensity equal to 90% of CR The intensity during alternating exercise varied between 158% CP and 73% CP. Biopsy samples from the vastus lateralis muscle were taken before (PRE), at the midpoint and end (POST) of exercise and analysed for glycogen, lactate, PCr and pH. Although these metabolic variables in muscle changed significantly during both patterns of exercise, there were no significant differences (p > 0.05) between constant and alternating exercise for glycogen (PRE: 418.8 +/- 85 vs. 444.3 +/- 70; POST: 220.5 +/- 59 vs. 259.5 +/- 126mmol.kg(-1) dw), lactate (PRE: 8.5 +/- 7.7 vs. 8.5 +/- 8.3; POST: 49.9 +/- 19.0 vs. 42.6 +/- 26.6 mmol.kg(-1)dw), phosphocreatine (PRE: 77.9 +/- 11.6 vs. 75.7 +/- 16.9; POST: 65.8 +/- 12.1 vs. 61.2 +/- 12.7mmol.kg(-1)dw) or pH (PRE: 6.99 +/- 0.12 vs. 6.99 +/- 0.08; POST: 6.86 +/- 0.13 vs. 6.85 +/- 0.06), respectively. There were also no significant differences in blood lactate responses to the two patterns of exercise. These data suggest that, when the average power output is similar, large variations in exercise intensity exert no significant effect on muscle metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamics of drop formation and pinch-off have been investigated for a series of low viscosity elastic fluids possessing similar shear viscosities, but differing substantially in elastic properties. On initial approach to the pinch region, the viscoelastic fluids all exhibit the same global necking behavior that is observed for a Newtonian fluid of equivalent shear viscosity. For these low viscosity dilute polymer solutions, inertial and capillary forces form the dominant balance in this potential flow regime, with the viscous force being negligible. The approach to the pinch point, which corresponds to the point of rupture for a Newtonian fluid, is extremely rapid in such solutions, with the sudden increase in curvature producing very large extension rates at this location. In this region the polymer molecules are significantly extended, causing a localized increase in the elastic stresses, which grow to balance the capillary pressure. This prevents the necked fluid from breaking off, as would occur in the equivalent Newtonian fluid. Alternatively, a cylindrical filament forms in which elastic stresses and capillary pressure balance, and the radius decreases exponentially with time. A (0+1)-dimensional finitely extensible nonlinear elastic dumbbell theory incorporating inertial, capillary, and elastic stresses is able to capture the basic features of the experimental observations. Before the critical "pinch time" t(p), an inertial-capillary balance leads to the expected 2/3-power scaling of the minimum radius with time: R-min similar to(t(p)-t)(2/3). However, the diverging deformation rate results in large molecular deformations and rapid crossover to an elastocapillary balance for times t>t(p). In this region, the filament radius decreases exponentially with time R-min similar to exp[(t(p)-t)/lambda(1)], where lambda(1) is the characteristic time constant of the polymer molecules. Measurements of the relaxation times of polyethylene oxide solutions of varying concentrations and molecular weights obtained from high speed imaging of the rate of change of filament radius are significantly higher than the relaxation times estimated from Rouse-Zimm theory, even though the solutions are within the dilute concentration region as determined using intrinsic viscosity measurements. The effective relaxation times exhibit the expected scaling with molecular weight but with an additional dependence on the concentration of the polymer in solution. This is consistent with the expectation that the polymer molecules are in fact highly extended during the approach to the pinch region (i.e., prior to the elastocapillary filament thinning regime) and subsequently as the filament is formed they are further extended by filament stretching at a constant rate until full extension of the polymer coil is achieved. In this highly extended state, intermolecular interactions become significant, producing relaxation times far above theoretical predictions for dilute polymer solutions under equilibrium conditions. (C) 2006 American Institute of Physics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many passengers experience discomfort during flight because of the effect of low humidity on the skin, eyes, throat, and nose. In this physiological study, we have investigated whether flight and low humidity also affect the tympanic membrane. From previous studies, a decrease in admittance of the tympanic membrane through drying might be expected to affect the buffering capacity of the middle ear and to disrupt automatic pressure regulation. This investigation involved an observational study onboard an aircraft combined with experiments in an environmental chamber, where the humidity could be controlled but could not be made to be as low as during flight. For the flight study, there was a linear relationship between the peak compensated static admittance of the tympanic membrane and relative humidity with a constant of proportionality of 0.00315 mmho/% relative humidity. The low humidity at cruise altitude (minimum 22.7 %) was associated with a mean decrease in admittance of about 20 % compared with measures in the airport. From the chamber study, we further found that a mean decrease in relative humidity of 23.4 % led to a significant decrease in mean admittance by 0.11 mmho [F(1,8) = 18.95, P = 0.002], a decrease of 9.4 %. The order of magnitude for the effect of humidity was similar for the flight and environmental chamber studies. We conclude that admittance changes during flight were likely to have been caused by the low humidity in the aircraft cabin and that these changes may affect the automatic pressure regulation of the middle ear during descent. © 2013 Association for Research in Otolaryngology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sequence of constant-frequency tones can promote streaming in a subsequent sequence of alternating-frequency tones, but why this effect occurs is not fully understood and its time course has not been investigated. Experiment 1 used a 2.0-s-long constant-frequency inducer (10 repetitions of a low-frequency pure tone) to promote segregation in a subsequent, 1.2-s test sequence of alternating low- and high-frequency tones. Replacing the final inducer tone with silence substantially reduced reported test-sequence segregation. This reduction did not occur when either the 4th or 7th inducer was replaced with silence. This suggests that a change at the induction/test-sequence boundary actively resets build-up, rather than less segregation occurring simply because fewer inducer tones were presented. Furthermore, Experiment 2 found that a constant-frequency inducer produced its maximum segregation-promoting effect after only three tones—this contrasts with the more gradual build-up typically observed for alternating-frequency sequences. Experiment 3 required listeners to judge continuously the grouping of 20-s test sequences. Constant-frequency inducers were considerably more effective at promoting segregation than alternating ones; this difference persisted for ~10 s. In addition, resetting arising from a single deviant (longer tone) was associated only with constant-frequency inducers. Overall, the results suggest that constant-frequency inducers promote segregation by capturing one subset of test-sequence tones into an ongoing, preestablished stream, and that a deviant tone may reduce segregation by disrupting this capture. These findings offer new insight into the dynamics of stream segregation, and have implications for the neural basis of streaming and the role of attention in stream formation. (PsycINFO Database Record (c) 2013 APA, all rights reserved)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using suitable coupled Navier-Stokes Equations for an incompressible Newtonian fluid we investigate the linear and non-linear steady state solutions for both a homogeneously and a laterally heated fluid with finite Prandtl Number (Pr=7) in the vertical orientation of the channel. Both models are studied within the Large Aspect Ratio narrow-gap and under constant flux conditions with the channel closed. We use direct numerics to identify the linear stability criterion in parametric terms as a function of Grashof Number (Gr) and streamwise infinitesimal perturbation wavenumber (making use of the generalised Squire’s Theorem). We find higher harmonic solutions at lower wavenumbers with a resonance of 1:3exist, for both of the heating models considered. We proceed to identify 2D secondary steady state solutions, which bifurcate from the laminar state. Our studies show that 2D solutions are found not to exist in certain regions of the pure manifold, where we find that 1:3 resonant mode 2D solutions exist, for low wavenumber perturbations. For the homogeneously heated fluid, we notice a jump phenomenon existing between the pure and resonant mode secondary solutions for very specific wavenumbers .We attempt to verify whether mixed mode solutions are present for this model by considering the laterally heated model with the same geometry. We find mixed mode solutions for the laterally heated model showing that a bridge exists between the pure and 1:3 resonant mode 2D solutions, of which some are stationary and some travelling. Further, we show that for the homogeneously heated fluid that the 2D solutions bifurcate in hopf bifurcations and there exists a manifold where the 2D solutions are stable to Eckhaus criterion, within this manifold we proceed to identify 3D tertiary solutions and find that the stability for said 3D bifurcations is not phase locked to the 2D state. For the homogeneously heated model we identify a closed loop within the neutral stability curve for higher perturbation wavenumubers and analyse the nature of the multiple 2D bifurcations around this loop for identical wavenumber and find that a temperature inversion occurs within this loop. We conclude that for a homogeneously heated fluid it is possible to have abrup ttransitions between the pure and resonant 2D solutions, and that for the laterally heated model there exist a transient bifurcation via mixed mode solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines a method for locating within a scene a distribution of an absorbing gas using a passive imaging technique. An oscillatory modulation of the angle of a narrowband dielectric filter located in front of a camera imaging a scene, gives rise to an intensity modulation that differs in regions occupied by the absorbing gas. A preliminary low cost system has been constructed from readily available components which demonstrates how the location of gas within a scene can be implemented. Modelling of the system has been carried out, especially highlighting the transmission effects of the dielectric filter upon different regions of the image.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sequence of constant-frequency tones can promote streaming in a subsequent sequence of alternating-frequency tones, but why this effect occurs is not fully understood and its time course has not been investigated. Experiment 1 used a 2.0-s-long constant-frequency inducer (10 repetitions of a low-frequency pure tone) to promote segregation in a subsequent, 1.2-s test sequence of alternating low- and high-frequency tones. Replacing the final inducer tone with silence substantially reduced reported test-sequence segregation. This reduction did not occur when either the 4th or 7th inducer was replaced with silence. This suggests that a change at the induction/test-sequence boundary actively resets build-up, rather than less segregation occurring simply because fewer inducer tones were presented. Furthermore, Experiment 2 found that a constant-frequency inducer produced its maximum segregation-promoting effect after only three tones—this contrasts with the more gradual build-up typically observed for alternating-frequency sequences. Experiment 3 required listeners to judge continuously the grouping of 20-s test sequences. Constant-frequency inducers were considerably more effective at promoting segregation than alternating ones; this difference persisted for ~10 s. In addition, resetting arising from a single deviant (longer tone) was associated only with constant-frequency inducers. Overall, the results suggest that constant-frequency inducers promote segregation by capturing one subset of test-sequence tones into an ongoing, preestablished stream, and that a deviant tone may reduce segregation by disrupting this capture. These findings offer new insight into the dynamics of stream segregation, and have implications for the neural basis of streaming and the role of attention in stream formation. (PsycINFO Database Record (c) 2013 APA, all rights reserved)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

External combustion heat cycle engines convert thermal energy into useful work. Thermal energy resources include solar, geothermal, bioenergy, and waste heat. To harness these and maximize work output, there has been a renaissance of interest in the investigation of vapour power cycles for quasi-isothermal (near constant temperature) instead of adiabatic expansion. Quasi-isothermal expansion has the advantage of bringing the cycle efficiency closer to the ideal Carnot efficiency, but it requires heat to be transferred to the working fluid as it expands. This paper reviews various low-temperature vapour power cycle heat engines with quasi-isothermal expansion, including the methods employed to realize the heat transfer. The heat engines take the form of the Rankine cycle with continuous heat addition during the expansion process, or the Stirling cycle with a condensable vapour as working fluid. Compared to more standard Stirling engines using gas, the specific work output is higher. Cryogenic heat engines based on the Rankine cycle have also been enhanced with quasi-isothermal expansion. Liquid flooded expansion and expander surface heating are the two main heat transfer methods employed. Liquid flooded expansion has been applied mainly in rotary expanders, including scroll turbines; whereas surface heating has been applied mainly in reciprocating expanders. © 2014 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three experiments investigated the dynamics of auditory stream segregation. Experiment 1 used a 2.0-s constant-frequency inducer (10 repetitions of a low-frequency pure tone) to promote segregation in a subsequent, 1.2-s test sequence of alternating low- and high-frequency tones. Replacing the final inducer tone with silence reduced reported test-sequence segregation substantially. This reduction did not occur when either the 4th or 7th inducer was replaced with silence. This suggests that a change at the induction/test-sequence boundary actively resets buildup, rather than less segregation occurring simply because fewer inducer tones were presented. Furthermore, Experiment 2 found that a constant-frequency inducer produced its maximum segregation-promoting effect after only 3 tone cycles - this contrasts with the more gradual build-up typically observed for alternating sequences. Experiment 3 required listeners to judge continuously the grouping of 20-s test sequences. Constant-frequency inducers were considerably more effective at promoting segregation than alternating ones; this difference persisted for ∼10 s. In addition, resetting arising from a single deviant (longer tone) was associated only with constant-frequency inducers. Overall, the results suggest that constant-frequency inducers promote segregation by capturing one subset of test-sequence tones into an on-going, pre-established stream and that a deviant tone may reduce segregation by disrupting this capture. © 2013 Acoustical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments have shown that ocean acidification due to rising atmospheric carbon dioxide concentrations has deleterious effects on the performance of many marine organisms. However, few empirical or modelling studies have addressed the long-term consequences of ocean acidification for marine ecosystems. Here we show that as pH declines from 8.1 to 7.8 (the change expected if atmospheric carbon dioxide concentrations increase from 390 to 750 ppm, consistent with some scenarios for the end of this century) some organisms benefit, but many more lose out. We investigated coral reefs, seagrasses and sediments that are acclimatized to low pH at three cool and shallow volcanic carbon dioxide seeps in Papua New Guinea. At reduced pH, we observed reductions in coral diversity, recruitment and abundances of structurally complex framework builders, and shifts in competitive interactions between taxa. However, coral cover remained constant between pH 8.1 and ~7.8, because massive Porites corals established dominance over structural corals, despite low rates of calcification. Reef development ceased below pH 7.7. Our empirical data from this unique field setting confirm model predictions that ocean acidification, together with temperature stress, will probably lead to severely reduced diversity, structural complexity and resilience of Indo-Pacific coral reefs within this century.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissolution of anthropogenic CO(2) increases the partial pressure of CO(2) (pCO(2)) and decreases the pH of seawater. The rate of Fe uptake by the dominant N(2)-fixing cyanobacterium Trichodesmium declines as pH decreases in metal-buffered medium. The slower Fe-uptake rate at low pH results from changes in Fe chemistry and not from a physiological response of the organism. Contrary to previous observations in nutrient-replete media, increasing pCO(2)/decreasing pH causes a decrease in the rates of N(2) fixation and growth in Trichodesmium under low-Fe conditions. This result was obtained even though the bioavailability of Fe was maintained at a constant level by increasing the total Fe concentration at low pH. Short-term experiments in which pCO(2) and pH were varied independently showed that the decrease in N(2) fixation is caused by decreasing pH rather than by increasing pCO(2) and corresponds to a lower efficiency of the nitrogenase enzyme. To compensate partially for the loss of N(2) fixation efficiency at low pH, Trichodesmium synthesizes additional nitrogenase. This increase comes partly at the cost of down-regulation of Fe-containing photosynthetic proteins. Our results show that although increasing pCO(2) often is beneficial to photosynthetic marine organisms, the concurrent decreasing pH can affect primary producers negatively. Such negative effects can occur both through chemical mechanisms, such as the bioavailability of key nutrients like Fe, and through biological mechanisms, as shown by the decrease in N(2) fixation in Fe-limited Trichodesmium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

If magnetism is universal in nature, magnetic materials are ubiquitous. A life without magnetism is unthinkable and a day without the influence of a magnetic material is unimaginable. They find innumerable applications in the form of many passive and active devices namely, compass, electric motor, generator, microphone, loud speaker, maglev train, magnetic resonance imaging, data recording and reading, hadron collider etc. The list is endless. Such is the influence of magnetism and magnetic materials in ones day to day life. With the advent of nanoscience and nanotechnology, along with the emergence of new areas/fields such as spintronics, multiferroics and magnetic refrigeration, the importance of magnetism is ever increasing and attracting the attention of researchers worldwide. The search for a fluid which exhibits magnetism has been on for quite some time. However nature has not bestowed us with a magnetic fluid and hence it has been the dream of many researchers to synthesize a magnetic fluid which is thought to revolutionize many applications based on magnetism. The discovery of a magnetic fluid by Jacob Rabinow in the year 1952 paved the way for a new branch of Physics/Engineering which later became magnetic fluids. This gave birth to a new class of material called magnetorheological materials. Magnetorheological materials are considered superior to electrorheological materials in that magnetorheology is a contactless operation and often inexpensive.Most of the studies in the past on magnetorheological materials were based on magnetic fluids. Recently the focus has been on the solid state analogue of magnetic fluids which are called Magnetorheological Elastomers (MREs). The very word magnetorheological elastomer implies that the rheological properties of these materials can be altered by the influence of an external applied magnetic field and this process is reversible. If the application of an external magnetic field modifies the viscosity of a magnetic fluid, the effect of external magnetic stimuli on a magnetorheological elastomer is in the modification of its stiffness. They are reversible too. Magnetorheological materials exhibit variable stiffness and find applications in adaptive structures of aerospace, automotive civil and electrical engineering applications. The major advantage of MRE is that the particles are not able to settle with time and hence there is no need of a vessel to hold it. The possibility of hazardous waste leakage is no more with a solid MRE. Moreover, the particles in a solid MRE will not affect the performance and durability of the equipment. Usually MR solids work only in the pre yield region while MR fluids, typically work in the post yield state. The application of an external magnetic field modifies the stiffness constant, shear modulus and loss modulus which are complex quantities. In viscoelastic materials a part of the input energy is stored and released during each cycle and a part is dissipated as heat. The storage modulus G′ represents the capacity of the material to store energy of deformation, which contribute to material stiffness. The loss modulusG′′ represents the ability of the material to dissipate the energy of deformation. Such materials can find applications in the form of adaptive vibration absorbers (ATVAs), stiffness tunable mounts and variable impedance surfaces. MREs are an important material for automobile giants and became the focus of this research for eventual automatic vibration control, sound isolation, brakes, clutches and suspension systems