973 resultados para Locally Advanced Head
Resumo:
An isothermal section of the phase diagram for the system Nd-Pd-O at 1350 K has been established by equilibration of samples representing 13 different compositions and phase identification after quenching by optical and scanning electron microscopy, x-ray diffraction, and energy dispersive analysis of x-rays. The binary oxides PdO and NdO were not stable at 1350 K. Two ternary oxides Nd4PdO7 and Nd2Pd2O5 were identified. Solid and liquid alloys, as well as the intermetallics NdPd3 and NdPd5, were found to be in equilibrium with Nd2O3. Based on the phase relations, three solidstate cells were designed to measure the Gibbs energies of formation of PdO and the two ternary oxides. An advanced version of the solid-state cell incorporating a buffer electrode was used for high-temperature thermodynamic measurements. The function of the buffer electrode, placed between reference and working electrodes, was to absorb the electrochemical flux of the mobile species through the solid electrolyte caused by trace electronic conductivity. The buffer electrode prevented polarization of the measuring electrode and ensured accurate data. Yttria-stabilized zirconia was used as the solid electrolyte and pure oxygen gas at a pressure of 0.1 MP a as the reference electrode. Electromotive force measurements, conducted from 950 to 1425 K, indicated the presence of a third ternary oxide Nd2PdO4, stable below 1135 (±10) K. Additional cells were designed to study this compound. The standard Gibbs energy of formation of PdO (†f G 0) was measured from 775 to 1125 Kusing two separate cell designs against the primary reference standard for oxygen chemical potential. Based on the thermodynamic information, chemical potential diagrams for the system Nd-Pd-O were also developed.
Resumo:
An advanced design of the solid-state cell incorporating a buffer electrode has been developed for high temperature thermodynamic measurements. The function of the buffer electrode, placed between reference and working electrodes, was to absorb the electrochemical flux of the mobile species through the solid electrolyte caused by trace electronic conductivity. The buffer electrode prevented polarization of the measuring electrode and ensured accurate data. The application of the novel design and its advantages have been demonstrated by measuring the standard Gibbs energies of formation of ternary oxides of the system Sm–Pd–O. Yttria-stabilized zirconia was used as the solid electrolyte and pure oxygen gas at a pressure of 0.1 MPa as the reference electrode. For the design of appropriate working electrodes, phase relations in the ternary system Sm–Pd–O were investigated at 1273 K. The two ternary oxides, Sm4PdO7 and Sm2Pd2O5, compositions of which fall on the Sm2O3–PdO join, were found to coexist with pure metal Pd. The thermodynamic properties of the ternary oxides were measured using three-phase electrodes in the temperature range 950–1425 K. During electrochemical measurements a third ternary oxide, Sm2PdO4, was found to be stable at low temperature. The standard Gibbs energies of formation (Δf(ox)Go) of the compounds from their component binary oxides Sm2O3 and PdO, can be represented by the equations: Sm4PdO7: Δf(ox)Go (J mol−1)=−34,220+0.84T(K) (±280); Sm2PdO4: Δf(ox)Go (J mol−1)=−33,350+2.49T(K) (±230); Sm2Pd2O5: Δf(ox)Go (J mol−1)=−59,955+1.80T(K) (±320). Based on the thermodynamic information, three-dimensional P–T–C and chemical potential diagrams for the system Sm–Pd–O were developed.
Resumo:
Ergonomic design of products demands accurate human dimensions-anthropometric data. Manual measurement over live subjects, has several limitations like long time, required presence of subjects for every new measurement, physical contact etc. Hence the data currently available is limited and anthropometric data related to facial features is difficult to obtain. In this paper, we discuss a methodology to automatically detect facial features and landmarks from scanned human head models. Segmentation of face into meaningful patches corresponding to facial features is achieved by Watershed algorithms and Mathematical Morphology tools. Many Important physiognomical landmarks are identified heuristically.
Resumo:
The current paper suggests a new procedure for designing helmets for head impact protection for users such as motorcycle riders. According to the approach followed here, a helmet is mounted on a featureless Hybrid 3 headform that is used in assessing vehicles for compliance to the FMVSS 201 regulation in the USA for upper interior head impact safety. The requirement adopted in the latter standard, i.e. not exceeding a threshold HIC(d) limit of 1000, is applied in the present study as a likely criterion for adjudging the efficacy of helmets. An impact velocity of 6 m/s (13.5 mph) for the helmet-headform system striking a rigid target can probably be acceptable for ascertaining a helmet's effectiveness as a countermeasure for minimizing the risk of severe head injury. The proposed procedure is demonstrated with the help of a validated LS-DYNA model of a featureless Hybrid 3 headform in conjunction with a helmet model comprising an outer polypropylene shell to the inner surface of which is bonded a protective polyurethane foam padding of a given thickness. Based on simulation results of impact on a rigid surface, it appears that a minimum foam padding thickness of 40 mm is necessary for obtaining an acceptable value of HIC(d).
Resumo:
Voltage source inverters (VSIs) supply nonsinusoidal voltages to induction motor drives, leading to line current distortion and torque pulsation. Conventional space vector pulsewidth modulation (PWM) techniques are widely used in VSIs on the account of good waveform quality and high dc bus utilization. In a conventional space vector PWM technique, the switching sequence begins with one zero state and ends with the other zero state in a subcycle. Some novel switching sequences have been proposed, which employ only one zero state but apply one of the two active states twice in a subcycle. One pair of such special switching sequences has recently been shown to reduce the pulsating torque considerably. In this paper, the conventional and special switching sequences are compared experimentally in terms of acoustic noise. In the low-and medium-speed ranges, the special switching sequence is seen to reduce the amplitude of the tonal component of noise at the switching frequency considerably and is also found to result in spread spectrum.
Resumo:
Our everyday visual experience frequently involves searching for objects in clutter. Why are some searches easy and others hard? It is generally believed that the time taken to find a target increases as it becomes similar to its surrounding distractors. Here, I show that while this is qualitatively true, the exact relationship is in fact not linear. In a simple search experiment, when subjects searched for a bar differing in orientation from its distractors, search time was inversely proportional to the angular difference in orientation. Thus, rather than taking search reaction time (RT) to be a measure of target-distractor similarity, we can literally turn search time on its head (i.e. take its reciprocal 1/RT) to obtain a measure of search dissimilarity that varies linearly over a large range of target-distractor differences. I show that this dissimilarity measure has the properties of a distance metric, and report two interesting insights come from this measure: First, for a large number of searches, search asymmetries are relatively rare and when they do occur, differ by a fixed distance. Second, search distances can be used to elucidate object representations that underlie search - for example, these representations are roughly invariant to three-dimensional view. Finally, search distance has a straightforward interpretation in the context of accumulator models of search, where it is proportional to the discriminative signal that is integrated to produce a response. This is consistent with recent studies that have linked this distance to neuronal discriminability in visual cortex. Thus, while search time remains the more direct measure of visual search, its reciprocal also has the potential for interesting and novel insights. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The influence of geometric parameters, such as blade profile and hub geometry on axial flow turbines for micro hydro application remains poorly characterized. This paper first introduces a holistic theoretical model for studying the hydraulic phenomenon resulting from geometric modification to the blades. It then describes modification carried out on two runner stages, of which one has untwisted blades and the other has twisted blades obtained by modifying the inlet hub. The experimental results showed that the performance of the untwisted blade runner was satisfactory with a maximum efficiency of 68%. However, positive effects of twisted blades were clearly evident with an efficiency rise of more than 2%. This study also looks into the possible limitations of the model and suggests the extension of the experimental work and the use of computational tools to conduct a progressive validation of all experimental findings, especially on the flow physics within the hub region and the slip phenomena. The paper finally underlines the importance of developing a standardization philosophy for axial flow turbines specific for micro hydro requirements. DOI:10.1061/(ASCE)EY.1943-7897.0000060. (C) 2012 American Society of Civil Engineers.
Resumo:
ADVANCED MULTIFUNCTIONAL INORGANIC NANOSTRUCTURED OXIDES FOR CONTROLLED RELEASE AND SENSING. We demonstrate here certain examples of multifunctional nanostructured oxidematerials for biotechnological and environmental applications.Various in-house synthesized homogeneous nanostructured viz.mesoporous and nanotubes silica and titania have been employed for controlled drug delivery and electrochemical biosensing applications. Confinement of macromolecules such as proteins studied via electrochemical, thermal and spectroscopic methods showed no detrimental effect on native protein structure and function, thus suggesting effective utility of oxide nanostructures as bio-encapsulators. Multi-functionalitywas demonstrated via employing similar nanostructures for sensing organic water pollutants e.g. textile dyes.
Resumo:
This work proposes a boosting-based transfer learning approach for head-pose classification from multiple, low-resolution views. Head-pose classification performance is adversely affected when the source (training) and target (test) data arise from different distributions (due to change in face appearance, lighting, etc). Under such conditions, we employ Xferboost, a Logitboost-based transfer learning framework that integrates knowledge from a few labeled target samples with the source model to effectively minimize misclassifications on the target data. Experiments confirm that the Xferboost framework can improve classification performance by up to 6%, when knowledge is transferred between the CLEAR and FBK four-view headpose datasets.
Resumo:
Multi-view head-pose estimation in low-resolution, dynamic scenes is difficult due to blurred facial appearance and perspective changes as targets move around freely in the environment. Under these conditions, acquiring sufficient training examples to learn the dynamic relationship between position, face appearance and head-pose can be very expensive. Instead, a transfer learning approach is proposed in this work. Upon learning a weighted-distance function from many examples where the target position is fixed, we adapt these weights to the scenario where target positions are varying. The adaptation framework incorporates reliability of the different face regions for pose estimation under positional variation, by transforming the target appearance to a canonical appearance corresponding to a reference scene location. Experimental results confirm effectiveness of the proposed approach, which outperforms state-of-the-art by 9.5% under relevant conditions. To aid further research on this topic, we also make DPOSE- a dynamic, multi-view head-pose dataset with ground-truth publicly available with this paper.
Resumo:
Delaunay and Gabriel graphs are widely studied geo-metric proximity structures. Motivated by applications in wireless routing, relaxed versions of these graphs known as Locally Delaunay Graphs (LDGs) and Lo-cally Gabriel Graphs (LGGs) have been proposed. We propose another generalization of LGGs called Gener-alized Locally Gabriel Graphs (GLGGs) in the context when certain edges are forbidden in the graph. Unlike a Gabriel Graph, there is no unique LGG or GLGG for a given point set because no edge is necessarily in-cluded or excluded. This property allows us to choose an LGG/GLGG that optimizes a parameter of interest in the graph. We show that computing an edge max-imum GLGG for a given problem instance is NP-hard and also APX-hard. We also show that computing an LGG on a given point set with dilation ≤k is NP-hard. Finally, we give an algorithm to verify whether a given geometric graph G= (V, E) is a valid LGG.
Resumo:
An n-length block code C is said to be r-query locally correctable, if for any codeword x ∈ C, one can probabilistically recover any one of the n coordinates of the codeword x by querying at most r coordinates of a possibly corrupted version of x. It is known that linear codes whose duals contain 2-designs are locally correctable. In this article, we consider linear codes whose duals contain t-designs for larger t. It is shown here that for such codes, for a given number of queries r, under linear decoding, one can, in general, handle a larger number of corrupted bits. We exhibit to our knowledge, for the first time, a finite length code, whose dual contains 4-designs, which can tolerate a fraction of up to 0.567/r corrupted symbols as against a maximum of 0.5/r in prior constructions. We also present an upper bound that shows that 0.567 is the best possible for this code length and query complexity over this symbol alphabet thereby establishing optimality of this code in this respect. A second result in the article is a finite-length bound which relates the number of queries r and the fraction of errors that can be tolerated, for a locally correctable code that employs a randomized algorithm in which each instance of the algorithm involves t-error correction.
Resumo:
Space-vector-based pulse width modulation (PWM) for a voltage source inverter (VSI) offers flexibility in terms of different switching sequences. Numerical simulation is helpful to assess the performance of a PWM method before actual implementation. A quick-simulation tool to simulate a variety of space-vector-based PWM strategies for a two-level VSI-fed squirrel cage induction motor drive is presented. The simulator is developed using C and Python programming languages, and has a graphical user interface (GUI) also. The prime focus being PWM strategies, the simulator developed is 40 times faster than MATLAB in terms of the actual time taken for a simulation. Simulation and experimental results are presented on a 5-hp ac motor drive.
Resumo:
Structural Health Monitoring (SHM) is an effective extension of NDE to reduce down time and cost of Inspection of structural components. On – line monitoring is an essential part of SHM. Acoustic Emission Techniques have most of the desirable requirements of an effective SHM tool. With the kind of advancement seen in the last couple of decades in the field of electronics, computers and signal processing technologies it can only be more helpful in obtaining better and meaningful quantitative results which can further enhance the potential of AET for the purpose. Advanced Composite materials owing to their specific high performance characteristics are finding a wide range of engineering applications. Testing and Evaluation of this category of materials and SHM of composite structures have been very challenging problems due to the very nature of these materials. Mechanical behaviour of fiber composite materials under different loading conditions is complex and involves different types of failure mechanisms. This is where the potential of AET can be exploited effectively. This paper presents an over view of some relevant studies where AET has been utilised to test, evaluate and monitor health of composite structures.