947 resultados para Local electronic structures
Resumo:
This brief examines the application of nonlinear statistical process control to the detection and diagnosis of faults in automotive engines. In this statistical framework, the computed score variables may have a complicated nonparametric distri- bution function, which hampers statistical inference, notably for fault detection and diagnosis. This brief shows that introducing the statistical local approach into nonlinear statistical process control produces statistics that follow a normal distribution, thereby enabling a simple statistical inference for fault detection. Further, for fault diagnosis, this brief introduces a compensation scheme that approximates the fault condition signature. Experimental results from a Volkswagen 1.9-L turbo-charged diesel engine are included.
Resumo:
Local Controller Networks (LCNs) provide nonlinear control by interpolating between a set of locally valid, subcontrollers covering the operating range of the plant. Constructing such networks typically requires knowledge of valid local models. This paper describes a new genetic learning approach to the construction of LCNs directly from the dynamic equations of the plant, or from modelling data. The advantage is that a priori knowledge about valid local models is not needed. In addition to allowing simultaneous optimisation of both the controller and validation function parameters, the approach aids transparency by ensuring that each local controller acts independently of the rest at its operating point. It thus is valuable for simultaneous design of the LCNs and identification of the operating regimes of an unknown plant. Application results from a highly nonlinear pH neutralisation process and its associated neural network representation are utilised to illustrate these issues.
Resumo:
We present experimental results on benchmark problems in 3D cubic lattice structures with the Miyazawa-Jernigan energy function for two local search procedures that utilise the pull-move set: (i) population-based local search (PLS) that traverses the energy landscape with greedy steps towards (potential) local minima followed by upward steps up to a certain level of the objective function; (ii) simulated annealing with a logarithmic cooling schedule (LSA). The parameter settings for PLS are derived from short LSA-runs executed in pre-processing and the procedure utilises tabu lists generated for each member of the population. In terms of the total number of energy function evaluations both methods perform equally well, however. PLS has the potential of being parallelised with an expected speed-up in the region of the population size. Furthermore, both methods require a significant smaller number of function evaluations when compared to Monte Carlo simulations with kink-jump moves. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Periodic loading of 1-D metallodielectric electromagnetic bandgap (MEBG) structures has been rigorously investigated. Miniaturised and broadband MEBG structures have been produced by means of periodically loading a dipole array. A study has been carried out with regard to the loading mechanism, the number of stubs, the topology of the structure and the order of loading. Simulations have been carried out using a method of moments based software. First order uniform loading stubs have yielded a significant size reduction of the MEBG array and the bandwidth has doubled. Good agreement between simulations and measurements has been achieved. The current distribution on the proposed structure has been studied, yielding valuable insight. An interdigital topology has resulted in further miniaturisation and bandwidth enhancement. Fractal-type arrays have been produced after applying second order loading. A maximum miniaturisation of 2.5:1 has been achieved.
Resumo:
This paper presents an optimization-based approach to the design of asymmetrical filter structures having the maximum number of return- or insertion-loss ripples in the passband such as those based upon Chebyshev function prototypes. The proposed approach. has the following advantages over the general purpose optimization techniques adopted previously such as: less frequency sampling is required, optimization is carried out with respect to the Chebyshev (or minimax) criterion, the problem of local minima does not arise, and optimization is usually only required for the passband. When implemented around an accurate circuit simulation, the method can be used to include all the effects of discontinuities, junctions, fringing, etc. to reduce the amount of tuning required in the final filter. The design of asymmetrical ridged-waveguide bandpass filters is considered as an example. Measurements on a fabricated filter confirm the accuracy of the design procedure.
Resumo:
The complete spectrum of eigenwaves including surface plasmon polaritons (SPP), dynamic (bulk) and complex waves in the layered structures containing semiconductor and metallic films has been explored. The effects of loss, geometry and the parameters of dielectric layers on the eigenmode spectrum and, particularly, on the SPP modes have been analysed using both the asymptotic and rigorous numerical solutions of the full-wave dispersion equation. The field and Poynting vector distributions have been examined to identify the modes and elucidate their properties. It has been shown that losses and dispersion of permittivity qualitatively alter the spectral content and the eigenwave properties. The SPP counter-directional power fluxes in the film and surrounding dielectrics have been attributed to vortices of power flow, which are responsible for the distinctive features of SPP modes. It has been demonstrated for the first time that the maximal attainable slow-wave factor of the SPP modes guided by thin Au films at optical frequencies is capped not by losses but the frequency dispersion of the actual Au permittivity. © 2009 EDP Sciences.
Resumo:
The liquid structures of thin films of aqueous solutions of 0, 7, 19, 50, and 100 mol % isopropanol above O/Al-terminated gamma-alumina surfaces have been investigated by means of classical molecular dynamics simulations. The structuring effect of the oxide oil the liquid mixtures is strong and heavily dependent on the local structure of the oxide. Two distinct re-ions are found oil the oxide Surface characterized by the degree of coordination of Al atoms. Above octahedral Al atoms, water and isopropanol molecules adsorb via the oxygen atoms to maximize the electrostatic interaction, whereas above tetrahedral Al sites the solvent molecules adsorb via hydrogen atoms with the oxygen atoms away front the surface. More mobility is found in the second layer compared with the first; however, its structure is still influenced significantly by the orientation of molecules in the first adsorbed layer. Qualitatively, the displacement of water from the surface by the adsorption of isopropanol occurs with 2.6 Water molecules lost for every alcohol molecule present based on the effective surface areas of the two species calculated from the pure simulations.
Resumo:
To study some of the interfacial properties of PtSi/Si diodes, Schottky structures were fabricated on (100) crystalline silicon substrates by conventional thermal evaporation of Pt on Si followed by annealing at different temperatures (from 400 degrees C to 700 degrees C) to form PtSi. The PtSi/n-Si diodes, all yielded Schottky barrier (SB) heights that are remarkably temperature dependent. The temperature range (20-290 K) over which the I-V characteristics were measured in the present study is broader with a much lower limit (20 K), than what is usually reported in literature. These variations in the barrier height are adequately interpreted by introducing spatial inhomogeneity into the barrier potential with a Gaussian distribution having a mean barrier of 0.76 eV and a standard deviation of 30 meV. Multi-frequency capacitance-voltage measurements suggest that the barrier is primarily controlled by the properties of the silicide-silicon interface. The forward C-V characteristics, in particular, show small peaks at low frequencies that can be ascribed to interface states rather than to a series resistance effect.
Resumo:
The electronic structure of thin conducting wires with a narrow geometric constriction has been determined by density-functional theory computations in the local spin density approximation. Spontaneous spin polarization arises in nominally paramagnetic wires at sufficiently low density (r(s)>= 15). Real-space spin-polarization maps show a fascinating variety of magnetic structures pinned at the constriction. The frequency-dependent conductivity is different for the spin-up and spin-down channels and significantly lower than in wires of identically vanishing spin polarization.
Resumo:
We perform a study of the energetics of KH2PO4 (KDP) by using a shell model (SM) which was constructed by adjusting the interaction parameters to ab initio calculations, and was fitted to reproduce phonons, polarization-inversion energies and structural properties. We calculate the energy profiles by performing global displacements and local distortions following the ferroelectric (FE) mode pattern in clusters of different sizes embedded in a paraelectric (PE) phase matrix. These properties are expected to be relevant to the PE-FE phase transition. The obtained SM results are compared to corresponding ab initio (AI) data. The global instabilities are found in good agreement for both KDP and DKDP. We also find qualitative good agreement in the KDP structure and even quantitative agreement in the expanded DKDP structure for the local distortions. The SM results reproduce well different trends like increasing instabilities as the cluster sizes grows, as the heavier atoms are included, and as the volume is increased, in accordance with the corresponding data from AI calculations.
Resumo:
Motivation: We study a stochastic method for approximating the set of local minima in partial RNA folding landscapes associated with a bounded-distance neighbourhood of folding conformations. The conformations are limited to RNA secondary structures without pseudoknots. The method aims at exploring partial energy landscapes pL induced by folding simulations and their underlying neighbourhood relations. It combines an approximation of the number of local optima devised by Garnier and Kallel (2002) with a run-time estimation for identifying sets of local optima established by Reeves and Eremeev (2004).
Results: The method is tested on nine sequences of length between 50 nt and 400 nt, which allows us to compare the results with data generated by RNAsubopt and subsequent barrier tree calculations. On the nine sequences, the method captures on average 92% of local minima with settings designed for a target of 95%. The run-time of the heuristic can be estimated by O(n2D?ln?), where n is the sequence length, ? is the number of local minima in the partial landscape pL under consideration and D is the maximum number of steepest descent steps in attraction basins associated with pL.
Resumo:
A procedure is discussed for creating coherent superpositions of motional states of ion strings. The motional states are across the structural transition linear-zigzag, and their coherent superposition is achieved by means of spin-dependent forces, such that a coherent superposition of the electronic states of one ion evolves into an entangled state between the chain's internal and external degrees of freedom. It is shown that the creation of such an entangled state can be revealed by performing Ramsey interferometry with one ion of the chain.
Resumo:
The manner in which 90? ferroelectric-ferroelastic domains respond to changes in temperature has been mapped in BaTiO3 single crystals using atomic force microscopy. Domain periodicity remains unaltered until approximately 2 ? C below the Curie temperature (TC ), whereupon domains coarsened dramatically. This behavior was successfully rationalized by considering the temperature dependence of the parameters associated with standard models of ferroelastic domain formation. However, while successful in describing the expected radical increase in equilibrium period with temperature, the model did not predict the unusual mechanism by which domain coarsening occurred; this was not continuous at a local level but instead involved discrete domain annihilation events. Subsequent insights from a combination of free energy analysis for the system and further experimental data from an analogous situation, in which domain period increases with increasing crystal thickness, suggested that domain annihilation is inevitable whenever a component of the relevant gradient that affects domain period is orientated parallel to the domain walls. Consistent with this thesis, we note that, for the observations presented herein, the thermal gradient possessed a significant component parallel to the domain walls. We suggest that domain annihilation is a general feature of domain structures in gradient fields.