835 resultados para Living neurons
Resumo:
The corpus callosum (CC) is the major commissure that bridges the cerebral hemispheres. Agenesis of the CC is associated with human ciliopathies, but the origin of this default is unclear. Regulatory Factor X3 (RFX3) is a transcription factor involved in the control of ciliogenesis, and Rfx3-deficient mice show several hallmarks of ciliopathies including left-right asymmetry defects and hydrocephalus. Here we show that Rfx3-deficient mice suffer from CC agenesis associated with a marked disorganisation of guidepost neurons required for axon pathfinding across the midline. Using transplantation assays, we demonstrate that abnormalities of the mutant midline region are primarily responsible for the CC malformation. Conditional genetic inactivation shows that RFX3 is not required in guidepost cells for proper CC formation, but is required before E12.5 for proper patterning of the cortical septal boundary and hence accurate distribution of guidepost neurons at later stages. We observe focused but consistent ectopic expression of Fibroblast growth factor 8 (Fgf8) at the rostro commissural plate associated with a reduced ratio of GLIoma-associated oncogene family zinc finger 3 (GLI3) repressor to activator forms. We demonstrate on brain explant cultures that ectopic FGF8 reproduces the guidepost neuronal defects observed in Rfx3 mutants. This study unravels a crucial role of RFX3 during early brain development by indirectly regulating GLI3 activity, which leads to FGF8 upregulation and ultimately to disturbed distribution of guidepost neurons required for CC morphogenesis. Hence, the RFX3 mutant mouse model brings novel understandings of the mechanisms that underlie CC agenesis in ciliopathies.
Resumo:
Trisomy 13 was detected in 10% of mouse embryos obtained from pregnant females which were doubly heterozygous for Robertsonian chromosomes involving chromosome 13. The developing dorsal root ganglia and spinal cords were examined in trisomy 13 and littermate control mice between days 12 and 18 of gestation (E12-18). The overall size of the dorsal root ganglia and number of ganglion cells within a given ganglion were not altered, but the number of neurons immunoreactive for calbindin and calretinin was reduced. The trisomic spinal cord was reduced in size with neurons lying in a tightly compact distribution in the gray matter. In trisomic fetuses, the extent of the neuropil of the spinal cord was reduced, and may represent a diminished field of interneuronal connectivity, due to reduced arborization of dendritic processes of the neurons present, particularly of calbindin-immunostained neurons. Furthermore, the subpopulation of calretinin-immunoreactive neurons and axons was also reduced in developing trisomic gray and white matter, respectively. Thus, overexpression of genes on mouse chromosome 13 exerts a deleterious effect on the development of neuropil, affecting both dendritic and axonal arborization in the trisomy 13 mouse. The defect of calbindin or calretinin expression by subsets of dorsal root ganglion or spinal cord neurons may result from deficient cell-to-cell interactions with targets which are hypoplastic.
Resumo:
The number of HIV-infected persons with children and caregiving duties is likely to increase. From this statement, the present study was designed to establish how HIV infected caregivers organise their parenting routines and to determine their support needs. A further aim was to ascertain caregivers' perception of conspicuous behaviours displayed by their children. Finally, it sought to determine the extent to which the caregivers' assessment of their parenting activity is influenced by the required support and their children's perceived conspicuous behaviours. The study design was observational and cross-sectional. Sampling was based on the 7 HIV Outpatient Clinics associated with the national population-based Swiss HIV Cohort Study. It focused on persons living with HIV who are responsible for raising children below the age of 18. A total of 520 caregivers were approached and 261 participated. An anonymous, standardised, self-administered questionnaire was used for data collection. The data were analysed using descriptive statistical procedures and backward elimination multiple regression analysis. The 261 respondents cared for 406 children and adolescents under 18 years of age; the median age was 10 years. The caregivers' material resources were low. 70% had a net family income in a range below the median of Swiss net family income and 30% were dependent on welfare assistance. 73% were undergoing treatment with 86% reporting no physical impairments. The proportion of single caregivers was 34%. 92% of the children were living with their HIV infected caregivers. 80% of the children attended an institution such as a school or kindergarten during the day. 89% of the caregivers had access to social networks providing support. Nevertheless, caregivers required additional support in performing their parenting duties and indicated a need for assistance on the material level, in connection with legal problems and with participation in the labour market. 46% of the caregivers had observed one or more conspicuous behaviours displayed by their children, which indicates a challenging situation. However, most of these caregivers assessed their parenting activity very favourably. Backward elimination multiple regression analysis indicated that a smaller number of support needs, younger age of the eldest child and fewer physical impairments on the part of the caregiver enhance the caregivers' assessment of their parenting activity. Physicians should speak to caregivers living with HIV about their parenting responsibilities and provide the necessary scope for this subject in their consultation sessions. Physicians are in a position to draw their patients' attention to the services available to them.
Resumo:
BACKGROUND: Among the many definitions of frailty, the frailty phenotype defined by Fried et al. is one of few constructs that has been repeatedly validated: first in the Cardiovascular Health Study (CHS) and subsequently in other large cohorts in the North America. In Europe, the Survey of Health, Aging and Retirement in Europe (SHARE) is a gold mine of individual, economic and health information that can provide insight into better understanding of frailty across diverse population settings. A recent adaptation of the original five CHS-frailty criteria was proposed to make use of SHARE data and measure frailty in the European population. To test the validity of the SHARE operationalized frailty phenotype, this study aims to evaluate its prospective association with adverse health outcomes. METHODS: Data are from 11,015 community-dwelling men and women aged 60+ participating in wave 1 and 2 of the Survey of Health, Aging and Retirement in Europe, a population-based survey. Multivariate logistic regression analyses were used to assess the 2-year follow up effect of SHARE-operationalized frailty phenotype on the incidence of disability (disability-free at baseline) and on worsening disability and morbidity, adjusting for age, sex, income and baseline morbidity and disability. RESULTS: At 2-year follow up, frail individuals were at increased risk for: developing mobility (OR 3.07, 95% CI, 1.02-9.36), IADL (OR 5.52, 95% CI, 3.76-8.10) and BADL (OR 5.13, 95% CI, 3.53-7.44) disability; worsening mobility (OR 2.94, 95% CI, 2.19- 3.93) IADL (OR 4.43, 95% CI, 3.19-6.15) and BADL disability (OR 4.53, 95% CI, 3.14-6.54); and worsening morbidity (OR 1.77, 95% CI, 1.35-2.32). These associations were significant even among the prefrail, but with a lower magnitude of effect. CONCLUSIONS: The SHARE-operationalized frailty phenotype is significantly associated with all tested health outcomes independent of baseline morbidity and disability in community-dwelling men and women aged 60 and older living in Europe. The robustness of results validate the use of this phenotype in the SHARE survey for future research on frailty in Europe.
Resumo:
RESUMENeurones transitoires jouant un rôle de cibles intermédiaires dans le guidage des axones du corps calleuxLe guidage axonal est une étape clé permettant aux neurones d'établir des connexions synaptiques et de s'intégrer dans un réseau neural fonctionnel de manière spécifique. Des cellules-cibles intermédiaires appelées « guidepost » aident les axones à parcourir de longues distances dans le cerveau en leur fournissant des informations directionnelles tout au long de leur trajet. Il a été démontré que des sous-populations de cellules gliales au niveau de la ligne médiane guident les axones du corps calleux (CC) d'un hémisphère vers l'autre. Bien qu'il fût observé que le CC en développement contenait aussi des neurones, leur rôle était resté jusqu'alors inconnu.La publication de nos résultats a montré que pendant le développement embryonnaire, le CC contient des glies mais aussi un nombre considérable de neurones glutamatergiques et GABAergiques, nécessaires à la formation du corps calleux (Niquille et al., PLoS Biology, 2009). Dans ce travail, j'ai utilisé des techniques de morphologie et d'imagerie confocale 3D pour définir le cadre neuro-anatomique de notre modèle. De plus, à l'aide de transplantations sur tranches in vitro, de co-explants, d'expression de siRNA dans des cultures de neurones primaires et d'analyse in vivo sur des souris knock-out, nous avons démontré que les neurones du CC guident les axones callosaux en partie grâce à l'action attractive du facteur de guidage Sema3C sur son récepteur Npn- 1.Récemment, nous avons étudié l'origine, les aspects dynamiques de ces processus, ainsi que les mécanismes moléculaires impliqués dans la mise en place de ce faisceau axonal (Niquille et al., soumis). Tout d'abord, nous avons précisé l'origine et l'identité des neurones guidepost GABAergiques du CC par une étude approfondie de traçage génétique in vivo. J'ai identifié, dans le CC, deux populations distinctes de neurones GABAergiques venant des éminences ganglionnaires médiane (MGE) et caudale (CGE). J'ai ensuite étudié plus en détail les interactions dynamiques entre neurones et axones du corps calleux par microscopie confocale en temps réel. Puis nous avons défini le rôle de chaque sous-population neuronale dans le guidage des axones callosaux et de manière intéressante les neurones GABAergic dérivés de la MGE comme ceux de la CGE se sont révélés avoir une action attractive pour les axones callosaux dans des expériences de transplantation. Enfin, nous avons clarifié la base moléculaire de ces mécanismes de guidage par FACS sorting associé à un large criblage génétique de molécules d'intérêt par une technique très sensible de RT-PCR et ensuite ces résultats ont été validés par hybridation in situ.Nous avons également étudié si les neurones guidepost du CC étaient impliqués dans son agénésie (absence de CC), présente dans nombreux syndromes congénitaux chez 1 humain. Le gène homéotique Aristaless (Arx) contrôle la migration des neurones GABAergiques et sa mutation conduit à de nombreuses pathologies humaines, notamment la lissencéphalie liée à IX avec organes génitaux anormaux (XLAG) et agénésie du CC. Fait intéressant, nous avons constaté qu'ARX est exprimé dans toutes les populations GABAergiques guidepost du CC et que les embryons mutant pour Arx présentent une perte drastique de ces neurones accompagnée de défauts de navigation des axones (Niquille et al., en préparation). En outre, nous avons découvert que les souris déficientes pour le facteur de transcription ciliogenic RFX3 souffrent d'une agénésie du CC associé avec des défauts de mise en place de la ligne médiane et une désorganisation secondaire des neurones glutamatergiques guidepost (Benadiba et al., submitted). Ceci suggère fortement l'implication potentielle des deux types de neurones guidepost dans l'agénésie du CC chez l'humain.Ainsi, mon travail de thèse révèle de nouvelles fonctions pour ces neurones transitoires dans le guidage axonal et apporte de nouvelles perspectives sur les rôles respectifs des cellules neuronales et gliales dans ce processus.ABSTRACTRole of transient guidepost neurons in corpus callosum development and guidanceAxonal guidance is a key step that allows neurons to build specific synaptic connections and to specifically integrate in a functional neural network. Intermediate targets or guidepost cells act as critical elements that help to guide axons through long distance in the brain and provide information all along their travel. Subpopulations of midline glial cells have been shown to guide corpus callosum (CC) axons to the contralateral cerebral hemisphere. While neuronal cells are also present in the developing corpus callosum, their role still remains elusive.Our published results unravelled that, during embryonic development, the CC is populated in addition to astroglia by numerous glutamatergic and GABAergic guidepost neurons that are essential for the correct midline crossing of callosal axons (Niquille et al., PLoS Biology, 2009). In this work, I have combined morphological and 3D confocal imaging techniques to define the neuro- anatomical frame of our system. Moreover, with the use of in vitro transplantations in slices, co- explant experiments, siRNA manipulations on primary neuronal culture and in vivo analysis of knock-out mice we have been able to demonstrate that CC neurons direct callosal axon outgrowth, in part through the attractive action of Sema3C on its Npn-1 receptor.Recently, we have studied the origin, the dynamic aspects of these processes as well as the molecular mechanisms involved in the establishment of this axonal tract (Niquille et al., submitted). First, we have clarified the origin and the identity of the CC GABAergic guidepost neurons using extensive in vivo cell fate-mapping experiments. We identified two distinct GABAergic neuronal subpopulations, originating from the medial (MGE) and caudal (CGE) ganglionic eminences. I then studied in more details the dynamic interactions between CC neurons and callosal axons by confocal time-lapse video microscopy and I have also further characterized the role of each guidepost neuronal subpopulation in callosal guidance. Interestingly, MGE- and CGE-derived GABAergic neurons are both attractive for callosal axons in transplantation experiments. Finally, we have dissected the molecular basis of these guidance mechanisms by using FACS sorting combined with an extensive genetic screen for molecules of interest by a sensitive RT-PCR technique, as well as, in situ hybridization.I have also investigated whether CC guidepost neurons are involved in agenesis of the CC which occurs in numerous human congenital syndromes. Aristaless-related homeobox gene (Arx) regulates GABAergic neuron migration and its mutation leads to numerous human pathologies including X-linked lissencephaly with abnormal genitalia (XLAG) and severe CC agenesis. Interestingly, I found that ARX is expressed in all the guidepost GABAergic neuronal populations of the CC and that Arx-/- embryos exhibit a drastic loss of CC GABAergic interneurons accompanied by callosal axon navigation defects (Niquille et al, in preparation). In addition, we discovered that mice deficient for the ciliogenic transcription factor RFX3 suffer from CC agenesis associated with early midline patterning defects and a secondary disorganisation of guidepost glutamatergic neurons (Benadiba et al., submitted). This strongly points out the potential implication of both types of guidepost neurons in human CC agenesis.Taken together, my thesis work reveals novel functions for transient neurons in axonal guidance and brings new perspectives on the respective roles of neuronal and glial cells in these processes.
Resumo:
One of the most relevant demographic events in Spain from a recent historical perspective was the baby boom of the 1960s and 1970s. The “adapting to circumstances” of these generations of youth and their families through delayed emancipation and childbearing has been key in preventing a decline in their economic status. The results show that the reduction of the poverty risk among non-emancipated youth for the period 1980-2005 is explained by the fact that an increasing number of young Spaniards live with two employed parents. Thus, emancipation delay is found most in those families that can best afford it. Furthermore, the salaries of young workers remaining in the parental home have become an important factor in reducing their family poverty risk. On the other hand, fertility decline is readily explained by the economic difficulties young couples encounter in sustaining their offspring
Resumo:
This publication is a guide to understanding the Iowa Department of Transportation’s roadside management programs. It offers descriptions of various landscape designs or planting styles used within or adjacent to Iowa’s highway rights-of-way, as well as various plant profiles. In addition, this guide will help you learn more about the value of plants and their contribution to our environment and society. This publication is written for persons having little or no formal training in botany, and technical terminology has been kept to the minimum necessary to maintain standards of accuracy and conciseness in the descriptions.
Resumo:
The prevalence of obesity has markedly increased over the past few decades. Exploration of how hunger and satiety signals influence the reward system can help us understand non-homeostatic feeding. Insulin may act in the ventral tegmental area (VTA), a critical site for reward-seeking behavior, to suppress feeding. However, the neural mechanisms underlying insulin effects in the VTA remain unknown. We demonstrate that insulin, a circulating catabolic peptide that inhibits feeding, can induce long-term depression (LTD) of mouse excitatory synapses onto VTA dopamine neurons. This effect requires endocannabinoid-mediated presynaptic inhibition of glutamate release. Furthermore, after a sweetened high-fat meal, which elevates endogenous insulin, insulin-induced LTD is occluded. Finally, insulin in the VTA reduces food anticipatory behavior in mice and conditioned place preference for food in rats. Taken together, these results suggest that insulin in the VTA suppresses excitatory synaptic transmission and reduces anticipatory activity and preference for food-related cues.
Resumo:
Evidence on trends in prevalence of disease and disability can clarify whether countries are experiencing a compression or expansion of morbidity. An expansion of morbidity as indicated by disease have appeared in Europe and other developed regions. It is likely that better treatment, preventive measures and increases in education levels have contributed to the declines in mortality and increments in life expectancy. This paper examines whether there has been an expansion of morbidity in Catalonia (Spain). It uses trends in mortality and morbidity from major causes of death and links of these with survival to provide estimates of life expectancy with and without diseases and functioning loss. We use a repeated cross-sectional health survey carried out in 1994 and 2011 for measures of morbidity; mortality information comes from the Spanish National Statistics Institute. Our findings show that at age 65 the percentage of life with disease increased from 52% to 70% for men, and from 56% to 72% for women; the expectation of life unable to function increased from 24% to 30% for men and 40% to 47% for women between 1994 and 2011. These changes were attributable to increases in the prevalences of diseases and moderate functional limitation. Overall, we find an expansion of morbidity along the period. Increasing survival among people with diseases can lead to a higher prevalence of diseases in the older population. Higher prevalence of health problems can lead to greater pressure on the health care system and a growing burden of disease for individuals.
Resumo:
BACKGROUND: Human immunodeficiency virus (HIV)-infected children are at increased risk of infections caused by vaccine preventable pathogens, and specific immunization recommendations have been issued. METHODS: A prospective national multicenter study assessed how these recommendations are followed in Switzerland and how immunization history correlates with vaccine immunity. RESULTS: Among 87 HIV-infected children (mean age: 11.1 years) followed in the 5 Swiss university hospitals and 1 regional hospital, most (76%) had CD4 T cells >25%, were receiving highly active antiretroviral treatment (79%) and had undetectable viral load (60%). Immunization coverage was lower than in the general population and many lacked serum antibodies to vaccine-preventable pathogens, including measles (54%), varicella (39%), and hepatitis B (65%). The presence of vaccine antibodies correlated most significantly with having an up-to-date immunization history (P<0.05). An up-to-date immunization history was not related to age, immunologic stage, or viremia but to the referral medical center. CONCLUSIONS: All pediatricians in charge of HIV-infected children are urged to identify missing immunizations in this high-risk population.
Resumo:
A three-dimensional cell culture system was used as a model to study the influence of low levels of mercury in the developing brain. Aggregating cell cultures of fetal rat telencephalon were treated for 10 days either during an early developmental period (i.e., between days 5 and 15 in vitro) or during a phase of advanced maturation (i.e., between days 25 and 35) with mercury. An inorganic (HgCl2) and an organic mercury compound (monomethylmercury chloride, MeHgCl) were examined. By monitoring changes in cell type-specific enzymes activities, the concentration-dependent toxicity of the compounds was determined. In immature cultures, a general cytotoxicity was observed at 10(-6) M for both mercury compounds. In these cultures, HgCl2 appeared somewhat more toxic than MeHgCl. However, no appreciable demethylation of MeHgCl could be detected, indicating similar toxic potencies for both mercury compounds. In highly differentiated cultures, by contrast, MeHgCl exhibited a higher toxic potency than HgCl2. In addition, at 10(-6) M, MeHgCl showed pronounced neuron-specific toxicity. Below the cytotoxic concentrations, distinct glia-specific reactions could be observed with both mercury compounds. An increase in the immunoreactivity for glial fibrillary acidic protein, typical for gliosis, could be observed at concentrations between 10(-9) M and 10(-7) M in immature cultures, and between 10(-8) M and 3 x 10(-5) M in highly differentiated cultures. A conspicuous increase in the number and clustering of GSI-B4 lectin-binding cells, indicating a microglial response, was found at concentrations between 10(-10) M and 10(-7) M. These development-dependent and cell type-specific effects may reflect the pathogenic potential of long-term exposure to subclinical doses of mercury.
Resumo:
Extracellular acidification has been shown to generate action potentials (APs) in several types of neurons. In this study, we investigated the role of acid-sensing ion channels (ASICs) in acid-induced AP generation in brain neurons. ASICs are neuronal Na(+) channels that belong to the epithelial Na(+) channel/degenerin family and are transiently activated by a rapid drop in extracellular pH. We compared the pharmacological and biophysical properties of acid-induced AP generation with those of ASIC currents in cultured hippocampal neurons. Our results show that acid-induced AP generation in these neurons is essentially due to ASIC activation. We demonstrate for the first time that the probability of inducing APs correlates with current entry through ASICs. We also show that ASIC activation in combination with other excitatory stimuli can either facilitate AP generation or inhibit AP bursts, depending on the conditions. ASIC-mediated generation and modulation of APs can be induced by extracellular pH changes from 7.4 to slightly <7. Such local extracellular pH values may be reached by pH fluctuations due to normal neuronal activity. Furthermore, in the plasma membrane, ASICs are localized in close proximity to voltage-gated Na(+) and K(+) channels, providing the conditions necessary for the transduction of local pH changes into electrical signals.
Resumo:
The objectives of this study were to describe the different modalities of physical activity programs designed for moderate to severe dementia and to identify their impact on functional independence in activities of daily living (ADL). A critical review of randomized controlled trials related to the impact of physical activity programs in moderately to severely demented persons on ADL performance and meta-analysis of the identified studies were performed. Among the 303 identified articles, five responded to the selection criteria. Four out of the five studies demonstrated limited methodological quality. In one high-quality study, physical activity programs significantly delayed deterioration of ADL performance. The program components and ADL assessment tools vary widely across studies. Although the proposed treatments have not proven their efficiency in improving the ADL status of the patients, they were able to limit the decline in ADL functioning. Future research is warranted in order to identify clinically relevant modalities for physical activity programs for people with moderate to severe dementia.