960 resultados para Light water reactors
Resumo:
We present field measurements of air-sea gas exchange by the radon deficit method that were carried out during JASIN 1978 (NE Atlantic) and FGGE 1979 (Equatorial Atlantic). Both experiments comprised repeated deficit measurements at fixed position over periods of days or longer, using a previously descibed precise and fast-acquiaition, automatic radon measuring system. The deficit time series exhibit variations that only partly reflect the expected changes in gas transfer. By evaluating averages over each time series we deduce the following gas transfer velocities (average wind velocity and water temperature in parentheses): JASIN phase 1: 1.6 ± 0.8 m/d (at ~6 m/s, 13°C) JASIN phase 2: 4.3 ± 1.2 m/d (at ~8 m/s, 13°C) FGGE: 1.2 ± 0.4 m/d (at ~5 m/s, 28°C) 0.9 ± 0.4 m/d (at ~7 m/s, 28°C) 1.5 ± 0.4 m/d (at ~7 m/s, 28°C) The large difference betwen the JASIN phase 2 and FGGE values despite quite similare average wind velocity becomes even larger when the values are, however, fully compatible with the range of gas transfer velocities observed in laboratory experiments and the conclusion is suggested that their difference is caused by the highly different wind variability in JASIN and FGGE. We conclude that in gas exchange parameterization it is not sufficinent to consider wind velocity only. A comparison of our observations with laboratory results outlines the range of variations of air-sea gas transfer velocities with wind velocity and sea state. We also reformulate the radon deficit method, in the light of our observed deficit variations, to account explicitely for non-stationary and horizontal inhomogeneity in previous radon work introduces considerable uncertainty in deduced gas transfere velocity. We furthermore discuss the observational rewuirements that have to be met for an adequate exploitation of the radon deficit method, of which an observation area of minimum horizontal inhomogeneity and monitoring of the remaining inhomogeneities are thought to be the most stringent ones.
Resumo:
Deep water formation in the North Atlantic and Southern Ocean is widely thought to influence deglacial CO2 rise and climate change; here we suggest that deep water formation in the North Pacific may also play an important role. We present paired radiocarbon and boron isotope data from foraminifera from sediment core MD02-2489 at 3640 m in the North East Pacific. These show a pronounced excursion during Heinrich Stadial 1, with benthic-planktic radiocarbon offsets dropping to ~350 years, accompanied by a decrease in benthic d11B. We suggest this is driven by the onset of deep convection in the North Pacific, which mixes young shallow waters to depth, old deep waters to the surface, and low-pH water from intermediate depths into the deep ocean. This deep water formation event was likely driven by an increase in surface salinity, due to subdued atmospheric/monsoonal freshwater flux during Heinrich Stadial 1. The ability of North Pacific Deep Water (NPDW) formation to explain the excursions seen in our data is demonstrated in a series of experiments with an intermediate complexity Earth system model. These experiments also show that breakdown of stratification in the North Pacific leads to a rapid ~30 ppm increase in atmospheric CO2, along with decreases in atmospheric d13C and D14C, consistent with observations of the early deglaciation. Our inference of deep water formation is based mainly on results from a single sediment core, and our boron isotope data are unavoidably sparse in the key HS1 interval, so this hypothesis merits further testing. However we note that there is independent support for breakdown of stratification in shallower waters during this period, including a minimum in d15N, younging in intermediate water 14C, and regional warming. We also re-evaluate deglacial changes in North Pacific productivity and carbonate preservation in light of our new data, and suggest that the regional pulse of export production observed during the Bølling-Allerød is promoted by relatively stratified conditions, with increased light availability and a shallow, potent nutricline. Overall, our work highlights the potential of NPDW formation to play a significant and hitherto unrealized role in deglacial climate change and CO2 rise.
Resumo:
Based on the data of synchronous observations of hydrophysical and biogeochemical parameters in the near-mouth and shallow-water areas of the northern Caspian in 2000-2001, the scale of spatiotemporal variability in the following characteristics of the water-bottom system was estimated (1) flow velocity and direction within vortex structures formed by the combined effect of wind, discharge current, and the presence of higher aquatic plants; (2) dependence of the spatial distribution of the content and composition of suspended particulate matter on the hydrodynamic regime of waters and development of phytoplankton; (3) variations in the grain-size, petrographic, mineralogical, and chemical compositions of the upper layer of bottom sediments at several sites in the northern Caspian related to the particular local combination of dominant natural processes; and (4) limits of variability in the group composition of humus compounds in bottom sediments. The acquired data are helpful in estimating the geochemical consequences of a sea level rise and during the planning of preventive environmental protection measures in view of future oil and gas recovery in this region.