927 resultados para Lacunar upper cortex
Resumo:
The genetic variability of the "curimba", Prochilodus lineatus, from three locations in the Paraná river basin, was investigated by starch gel electrophoresis. A total of 160 specimens were analyzed for 19 enzymes, 12 of which permitted successful interpretation of electrophoretic patterns. Eighteen loci were identified and six of them proved to be polymorphic (EST-1*, EST-2*, IDH-1*, PGM-1*, PGM-2*, LDH-2*). Mean heterozygosity was considered high (13%) by comparison with the literature. A low level of differentiation was found among subpopulations, with mean F ST = 0.018. Values of genetic distance and genetic identity suggest that, at least along this stretch of the river, P. lineatus comprises a single breed with high gene flow. This analysis has important implications for fishery management, aquaculture, and conservation of the stocks
Resumo:
A total of 182 young adult male Wistar rats were bilaterally implanted with cannulae into the CA1 region of the dorsal hippocampus and into the amygdaloid nucleus, the entorhinal cortex, and the posterior parietal cortex. After recovery, the animals were trained in a step-down inhibitory avoidance task. At various times after training (0, 30, 60 or 90 min) the animals received a 0.5-µl microinfusion of vehicle (saline) or 0.5 µg of muscimol dissolved in the vehicle. A retention test was carried out 24 h after training. Retention test performance was hindered by muscimol administered into both the hippocampus and amygdala at 0 but not at 30 min posttraining. The drug was amnestic when given into the entorhinal cortex 30, 60 or 90 min after training, or into the parietal cortex 60 or 90 min after training, but not before. These findings suggest a sequential entry operation, during the posttraining period, of the hippocampus and amygdala, the entorhinal cortex, and the posterior parietal cortex in memory processing
Resumo:
The fundamental role of N-methyl-D-aspartate (NMDA) receptors in many cortical functions has been firmly defined, as has its involvement in a number of neurological and psychiatric diseases. However, until recently very little was known about the anatomical localization of NMDA receptors in the cerebral cortex of mammals. The recent application of molecular biological techniques to the study of NMDA receptors has provided specific tools which have greatly expanded our understanding of the localization of NMDA receptors in the cerebral cortex. In particular, immunocytochemical studies on the distribution of cortical NMDA receptors have shown that NMDA receptors are preferentially localized on dendritic spines, have disclosed an unknown fraction of presynaptic NMDA receptors on both excitatory and inhibitory axon terminals, and demonstrated that cortical astrocytes do express NMDA receptors. These studies suggest that the effects induced by the activation of NMDA receptors are not due solely to the opening of NMDA channels on neuronal postsynaptic membranes, as previously assumed, but that the activation of presynaptic and glial NMDA receptors may mediate part of these effects
Resumo:
Rapid eye movement (REM) sleep deprivation induces several behavioral changes. Among these, a decrease in yawning behavior produced by low doses of cholinergic agonists is observed which indicates a change in brain cholinergic neurotransmission after REM sleep deprivation. Acetylcholinesterase (Achase) controls acetylcholine (Ach) availability in the synaptic cleft. Therefore, altered Achase activity may lead to a change in Ach availability at the receptor level which, in turn, may result in modification of cholinergic neurotransmission. To determine if REM sleep deprivation would change the activity of Achase, male Wistar rats, 3 months old, weighing 250-300 g, were deprived of REM sleep for 96 h by the flower-pot technique (N = 12). Two additional groups, a home-cage control (N = 6) and a large platform control (N = 6), were also used. Achase was measured in the frontal cortex using two different methods to obtain the enzyme activity. One method consisted of the obtention of total (900 g supernatant), membrane-bound (100,000 g pellet) and soluble (100,000 g supernatant) Achase, and the other method consisted of the obtention of a fraction (40,000 g pellet) enriched in synaptic membrane-bound enzyme. In both preparations, REM sleep deprivation induced a significant decrease in rat frontal cortex Achase activity when compared to both home-cage and large platform controls. REM sleep deprivation induced a significant decrease of 16% in the membrane-bound Achase activity (nmol thiocholine formed min-1 mg protein-1) in the 100,000 g pellet enzyme preparation (home-cage group 152.1 ± 5.7, large platform group 152.7 ± 24.9 and REM sleep-deprived group 127.9 ± 13.8). There was no difference in the soluble enzyme activity. REM sleep deprivation also induced a significant decrease of 20% in the enriched synaptic membrane-bound Achase activity (home-cage group 126.4 ± 21.5, large platform group 127.8 ± 20.4, REM sleep-deprived group 102.8 ± 14.2). Our results suggest that REM sleep deprivation changes Ach availability at the level of its receptors through a decrease in Achase activity
Resumo:
Lesions of the entorhinal cortex produce retrograde memory impairment in both animals and humans. Here we report the effects of bilateral entorhinal cortex lesions caused by the stereotaxic infusion of N-methyl-D-aspartate (NMDA) in rats at two different moments, before or after the training session, on memory of different tasks: two-way shuttle avoidance, inhibitory avoidance and habituation to an open field. Pre- or post-training entorhinal cortex lesions caused an impairment of performance in the shuttle avoidance task, which agrees with the previously described role of this area in the processing of memories acquired in successive sessions. In the inhibitory avoidance task, only the post-training lesions had an effect (amnesia). No effect was observed on the open field task. The findings suggest that the role of the entorhinal cortex in memory processing is task-dependent, perhaps related to the complexity of each task
Resumo:
We studied the distribution of NADPH-diaphorase activity in the visual cortex of normal adult New World monkeys (Saimiri sciureus) using the malic enzyme "indirect" method. NADPH-diaphorase neuropil activity had a heterogeneous distribution. In coronal sections, it had a clear laminar pattern that was coincident with Nissl-stained layers. In tangential sections, we observed blobs in supragranular layers of V1 and stripes throughout the entire V2. We quantified and compared the tangential distribution of NADPH-diaphorase and cytochrome oxidase blobs in adjacent sections of the supragranular layers of V1. Although their spatial distributions were rather similar, the two enzymes did not always overlap. The histochemical reaction also revealed two different types of stained cells: a slightly stained subpopulation and a subgroup of deeply stained neurons resembling a Golgi impregnation. These neurons were sparsely spined non-pyramidal cells. Their dendritic arbors were very well stained but their axons were not always evident. In the gray matter, heavily stained neurons showed different dendritic arbor morphologies. However, most of the strongly reactive cells lay in the subjacent white matter, where they presented a more homogenous morphology. Our results demonstrate that the pattern of NADPH-diaphorase activity is similar to that previously described in Old World monkeys
Resumo:
The starting point of this study is to direct more attention to the teacher and those entrepreneurship education practices taking place in formal school to find out solutions for more effective promotion of entrepreneurship education. For this objective, the strategy-level aims of entrepreneurship education need to be operationalised into measurable and understandable teacher-level practices. Furthermore, to enable the effective development of entrepreneurship education in basic and upper secondary level education, more knowledge is needed of the state of affairs of entrepreneurship education in teaching. The purpose of the study is to increase the level of understanding of teachers’ entrepreneurship education practices, and through this to develop entrepreneurship education. This study builds on the literature on entrepreneurship education and especially those elements referring to the aims, resources, benefits, methods, and practises of entrepreneurship education. The study comprises five articles highlighting teachers’ role in entrepreneurship education. In the first article the concept of entrepreneurship and the teachers role in reflection upon his/hers approaches to entrepreneurship education are considered. The second article provides a detailed analysis of the process of developing a measurement tool to depict the teachers’ activities in entrepreneurship education. The next three articles highlight the teachers’ role in directing the entrepreneurship education in basic and upper secondary level education. Furthermore, they analyse the relationship between the entrepreneurship education practises and the teachers’ background characteristics. The results of the study suggest a wide range of conclusions and implications. First, in spite of many outspoken aims connected to entrepreneurship education, teachers have not set any aims for themselves. Additionally, aims and results seem to mix. However, it is possible to develop teachers’ target orientation by supporting their reflection skills, and through measurement and evaluation increase their understanding of their own practices. Second, applying a participatory action process it is possible to operationalise teachers’entrepreneurship education practices. It is central to include the practitioners’ perspective in the development of measures to make sure that the concepts and aims of entrepreneurship education are understood. Third, teachers’ demographic or tenure-related background characteristics do not affect their entrepreneurship education practices, but their training related to entrepreneurship education, participation in different school-level or regional planning, and their own capabilities support entrepreneurship education. Fourth, a large number of methods are applied to entrepreneurship education, and the most often used methods were different kinds of discussions, which seem to be an easy, low-threshold way for teachers to include entrepreneurship education regularly in their teaching. Field trips to business enterprises or inviting entrepreneurs to present their work in schools are used fairly seldom. Interestingly, visits outside the school are more common than visitors invited to the school. In line, most of the entrepreneurship education practices take place in a classroom. Therefore it seems to be useful to create and encourage teachers towards more in-depth cooperation with companies (e.g. via joint projects) and to network systematically. Finally, there are plenty of resources available for entrepreneurship education, such as ready-made materials, external stakeholders, support organisations, and learning games, but teachers have utilized them only marginally.
Resumo:
The effects of methylmercury (MeHg) on histochemical demonstration of the NADPH-diaphorase (NADPH-d) activity in the striate cortex were studied in 4 adult cats. Two animals were used as control. The contaminated animals received 50 ml milk containing 0.42 µg MeHg and 100 g fish containing 0.03 µg MeHg daily for 2 months. The level of MeHg in area 17 of intoxicated animals was 3.2 µg/g wet weight brain tissue. Two cats were perfused 24 h after the last dose (group 1) and the other animals were perfused 6 months later (group 2). After microtomy, sections were processed for NADPHd histochemistry procedures using the malic enzyme method. Dendritic branch counts were performed from camera lucida drawings for control and intoxicated animals (N = 80). Average, standard deviation and Student t-test were calculated for each data group. The concentrations of mercury (Hg) in milk, fish and brain tissue were measured by acid digestion of samples, followed by reduction of total Hg in the digested sample to metallic Hg using stannous chloride followed by atomic fluorescence analysis. Only group 2 revealed a reduction of the neuropil enzyme activity and morphometric analysis showed a reduction in dendritic field area and in the number of distal dendrite branches of the NADPHd neurons in the white matter (P<0.05). These results suggest that NADPHd neurons in the white matter are more vulnerable to the long-term effects of MeHg than NADPHd neurons in the gray matter.
Resumo:
The neuroendocrine system regulates several organic functions such as reproduction, metabolism and adaptation to the environment. This system shows seasonal changes linked to the environment. The experimental model used in the present study was Lagostomus maximus maximus (viscacha). The reproduction of males of this species is photoperiod dependent. Twenty-four adult male viscachas were captured in their habitat at different times during one year. The adrenal glands were processed for light microscopy. Serial cuts were stained with hematoxylin-eosin for the morphometric study, and 100 nuclei of each zone of the adrenal cortex were counted per animal. Data were analyzed statistically by ANOVA and the Tukey test. The cells of the glomerulosa zone are arranged in a tube-shaped structure. The fasciculata zone has large cells with central nuclei and clearly visible nucleoli and with a vacuolar cytoplasm. In the reticularis zone there are two of types of cells, one with a nucleus of fine chromatin and a clearly visible nucleolus and the other with nuclear pycnosis. Morphometric analysis showed maximum nuclear volumes during the February-March period with values of 133 ± 7.3 µm3 for the glomerulosa, 286.4 ± 14.72 µm3 for the fasciculata, and 126.3 ± 9.49 µm3 for the reticularis. Minimum nuclear volumes were observed in August with values of 88.24 ± 9.9 µm3 for the glomerulosa, 163.7 ± 7.78 µm3 for the fasciculata and 64.58 ± 4.53 µm3 for the reticularis. The short winter photoperiod to which viscacha is subjected could inhibit the adrenal cortex through a melatonin increase which reduces the nuclear volume as well as the cellular activity.
Resumo:
Glutamate receptors have been implicated in memory formation. The aim of the present study was to determine the effect of inhibitory avoidance training on specific [3H]-glutamate binding to membranes obtained from the hippocampus or parietal cortex of rats. Adult male Wistar rats were trained (0.5-mA footshock) in a step-down inhibitory avoidance task and were sacrificed 0, 5, 15 or 60 min after training. Hippocampus and parietal cortex were dissected and membranes were prepared and incubated with 350 nM [3H]-glutamate (N = 4-6 per group). Inhibitory avoidance training induced a 29% increase in glutamate binding in hippocampal membranes obtained from rats sacrificed at 5 min (P<0.01), but not at 0, 15, or 60 min after training, and did not affect glutamate binding in membranes obtained from the parietal cortex. These results are consistent with previous evidence for the involvement of glutamatergic synaptic modification in the hippocampus in the early steps of memory formation.
Resumo:
The most important component of the upper esophageal sphincter (UES) is the cricopharyngeal muscle. During the measurement of sphincter pressure the catheter passed through the sphincter affects the pressure value. In Chagas' disease and primary achalasia there is an esophageal myenteric plexus denervation which may affect UES pressure. We measured the UES pressure of 115 patients with Chagas' disease, 28 patients with primary achalasia and 40 healthy volunteers. We used a round manometric catheter with continuous perfusion and the rapid pull-through method, performed in triplicate during apnea. Pressures were measured in four directions, and the direction with the highest pressure (anterior/posterior) and the average of the four directions were measured. The highest UES pressure in Chagas' disease patients without abnormalities upon radiologic esophageal examination (N = 63) was higher than in normal volunteers (142.8 ± 47.4 mmHg vs 113.0 ± 46.0 mmHg, mean ± SD, P<0.05). There was no difference in UES pressure between patients with primary achalasia and patients with Chagas' disease and similar esophageal involvement and normal volunteers (P>0.05). There was no difference between patients with or without esophageal dilation. In the group of subjects less than 50 years of age the UES pressure of primary achalasia (N = 21) was lower than that of Chagas' disease patients with normal radiologic esophageal examination (N = 41), measured at the site with the highest pressure (109.3 ± 31.5 mmHg vs 149.6 ± 45.3 mmHg, P<0.01) and as the average of the four directions (64.2 ± 17.1 mmHg vs 83.5 ± 28.6 mmHg, P<0.05). We conclude that there is no difference in UES pressure between patients with Chagas' disease, primary achalasia and normal volunteers, except for patients with minor involvement by Chagas' disease, for whom the UES pressure at the site with the highest pressure was higher than the pressure of normal volunteers and patients with primary achalasia.
Resumo:
Some upper brainstem cholinergic neurons (pedunculopontine and laterodorsal tegmental nuclei) are involved in the generation of rapid eye movement (REM) sleep and project rostrally to the thalamus and caudally to the medulla oblongata. A previous report showed that 96 h of REM sleep deprivation in rats induced an increase in the activity of brainstem acetylcholinesterase (Achase), the enzyme which inactivates acetylcholine (Ach) in the synaptic cleft. There was no change in the enzyme's activity in the whole brain and cerebrum. The components of the cholinergic synaptic endings (for example, Achase) are not uniformly distributed throughout the discrete regions of the brain. In order to detect possible regional changes we measured Achase activity in several discrete rat brain regions (medulla oblongata, pons, thalamus, striatum, hippocampus and cerebral cortex) after 96 h of REM sleep deprivation. Naive adult male Wistar rats were deprived of REM sleep using the flower-pot technique, while control rats were left in their home cages. Total, membrane-bound and soluble Achase activities (nmol of thiocholine formed min-1 mg protein-1) were assayed photometrically. The results (mean ± SD) obtained showed a statistically significant (Student t-test) increase in total Achase activity in the pons (control: 147.8 ± 12.8, REM sleep-deprived: 169.3 ± 17.4, N = 6 for both groups, P<0.025) and thalamus (control: 167.4 ± 29.0, REM sleep-deprived: 191.9 ± 15.4, N = 6 for both groups, P<0.05). Increases in membrane-bound Achase activity in the pons (control: 171.0 ± 14.7, REM sleep-deprived: 189.5 ± 19.5, N = 6 for both groups, P<0.05) and soluble enzyme activity in the medulla oblongata (control: 147.6 ± 16.3, REM sleep-deprived: 163.8 ± 8.3, N = 6 for both groups, P<0.05) were also observed. There were no statistically significant differences in the enzyme's activity in the other brain regions assayed. The present findings show that the increase in Achase activity induced by REM sleep deprivation was specific to the pons, a brain region where cholinergic neurons involved in REM generation are located, and also to brain regions which receive cholinergic input from the pons (the thalamus and medulla oblongata). During REM sleep extracellular levels of Ach are higher in the pons, medulla oblongata and thalamus. The increase in Achase activity in these brain areas after REM sleep deprivation suggests a higher rate of Ach turnover.
Resumo:
It has been suggested that glucocorticoids released during stress might impair neuronal function by decreasing glucose uptake by hippocampal neurons. Previous work has demonstrated that glucose uptake is reduced in hippocampal and cerebral cortex slices 24 h after exposure to acute stress, while no effect was observed after repeated stress. Here, we report the effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices and on plasma glucose and corticosterone levels. Male adult Wistar rats were exposed to restraint 1 h/day for 50 days in the chronic model. In the acute model there was a single exposure. Immediately or 24 h after stress, the animals were sacrificed and the hippocampus and cerebral cortex were dissected, sliced, and incubated with Krebs buffer, pH 7.4, containing 5 mM glucose and 0.2 µCi D-[U-14C] glucose. CO2 production from glucose was estimated. Trunk blood was also collected, and both corticosterone and glucose were measured. The results showed that corticosterone levels after exposure to acute restraint were increased, but the increase was smaller when the animals were submitted to repeated stress. Blood glucose levels increased after both acute and repeated stress. However, glucose utilization, measured as CO2 production in hippocampal and cerebral cortex slices, was the same in stressed and control groups under conditions of both acute and chronic stress. We conclude that, although stress may induce a decrease in glucose uptake, this effect is not sufficient to affect the energy metabolism of these cells.
Resumo:
The effects of in vivo chronic treatment and in vitro addition of imipramine, a tricyclic antidepressant, or fluoxetine, a selective serotonin reuptake inhibitor, on the cortical membrane-bound Na+,K+-ATPase activity were studied. Adult Wistar rats received daily intraperitoneal injections of 10 mg/kg of imipramine or fluoxetine for 14 days. Twelve hours after the last injection rats were decapitated and synaptic plasma membranes (SPM) from cerebral cortex were prepared to determine Na+,K+-ATPase activity. There was a significant decrease (10%) in enzyme activity after imipramine but fluoxetine treatment caused a significant increase (27%) in Na+,K+-ATPase activity compared to control (P<0.05, ANOVA; N = 7 for each group). When assayed in vitro, the addition of both drugs to SPM of naive rats caused a dose-dependent decrease in enzyme activity, with the maximal inhibition (60-80%) occurring at 0.5 mM. We suggest that a) imipramine might decrease Na+,K+-ATPase activity by altering membrane fluidity, as previously proposed, and b) stimulation of this enzyme might contribute to the therapeutic efficacy of fluoxetine, since brain Na+,K+-ATPase activity is decreased in bipolar patients.