801 resultados para Labeling hierarchical clustering
Resumo:
This work proposes a collaborative system for marking dangerous points in the transport routes and generation of alerts to drivers. It consisted of a proximity warning system for a danger point that is fed by the driver via a mobile device equipped with GPS. The system will consolidate data provided by several different drivers and generate a set of points common to be used in the warning system. Although the application is designed to protect drivers, the data generated by it can serve as inputs for the responsible to improve signage and recovery of public roads
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Capacitated Centered Clustering Problem (CCCP) consists of defining a set of p groups with minimum dissimilarity on a network with n points. Demand values are associated with each point and each group has a demand capacity. The problem is well known to be NP-hard and has many practical applications. In this paper, the hybrid method Clustering Search (CS) is implemented to solve the CCCP. This method identifies promising regions of the search space by generating solutions with a metaheuristic, such as Genetic Algorithm, and clustering them into clusters that are then explored further with local search heuristics. Computational results considering instances available in the literature are presented to demonstrate the efficacy of CS. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
One objective of the feeder reconfiguration problem in distribution systems is to minimize the power losses for a specific load. For this problem, mathematical modeling is a nonlinear mixed integer problem that is generally hard to solve. This paper proposes an algorithm based on artificial neural network theory. In this context, clustering techniques to determine the best training set for a single neural network with generalization ability are also presented. The proposed methodology was employed for solving two electrical systems and presented good results. Moreover, the methodology can be employed for large-scale systems in real-time environment.
Resumo:
The development of strategies for structural health monitoring (SHM) has become increasingly important because of the necessity of preventing undesirable damage. This paper describes an approach to this problem using vibration data. It involves a three-stage process: reduction of the time-series data using principle component analysis (PCA), the development of a data-based model using an auto-regressive moving average (ARMA) model using data from an undamaged structure, and the classification of whether or not the structure is damaged using a fuzzy clustering approach. The approach is applied to data from a benchmark structure from Los Alamos National Laboratory, USA. Two fuzzy clustering algorithms are compared: fuzzy c-means (FCM) and Gustafson-Kessel (GK) algorithms. It is shown that while both fuzzy clustering algorithms are effective, the GK algorithm marginally outperforms the FCM algorithm. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The use of clustering methods for the discovery of cancer subtypes has drawn a great deal of attention in the scientific community. While bioinformaticians have proposed new clustering methods that take advantage of characteristics of the gene expression data, the medical community has a preference for using classic clustering methods. There have been no studies thus far performing a large-scale evaluation of different clustering methods in this context. This work presents the first large-scale analysis of seven different clustering methods and four proximity measures for the analysis of 35 cancer gene expression data sets. Results reveal that the finite mixture of Gaussians, followed closely by k-means, exhibited the best performance in terms of recovering the true structure of the data sets. These methods also exhibited, on average, the smallest difference between the actual number of classes in the data sets and the best number of clusters as indicated by our validation criteria. Furthermore, hierarchical methods, which have been widely used by the medical community, exhibited a poorer recovery performance than that of the other methods evaluated. Moreover, as a stable basis for the assessment and comparison of different clustering methods for cancer gene expression data, this study provides a common group of data sets (benchmark data sets) to be shared among researchers and used for comparisons with new methods
Resumo:
The main goal of this work is to investigate the suitability of applying cluster ensemble techniques (ensembles or committees) to gene expression data. More specifically, we will develop experiments with three diferent cluster ensembles methods, which have been used in many works in literature: coassociation matrix, relabeling and voting, and ensembles based on graph partitioning. The inputs for these methods will be the partitions generated by three clustering algorithms, representing diferent paradigms: kmeans, ExpectationMaximization (EM), and hierarchical method with average linkage. These algorithms have been widely applied to gene expression data. In general, the results obtained with our experiments indicate that the cluster ensemble methods present a better performance when compared to the individual techniques. This happens mainly for the heterogeneous ensembles, that is, ensembles built with base partitions generated with diferent clustering algorithms
Resumo:
Image segmentation is the process of labeling pixels on di erent objects, an important step in many image processing systems. This work proposes a clustering method for the segmentation of color digital images with textural features. This is done by reducing the dimensionality of histograms of color images and using the Skew Divergence to calculate the fuzzy a nity functions. This approach is appropriate for segmenting images that have colorful textural features such as geological, dermoscopic and other natural images, as images containing mountains, grass or forests. Furthermore, experimental results of colored texture clustering using images of aquifers' sedimentary porous rocks are presented and analyzed in terms of precision to verify its e ectiveness.
Resumo:
We studied the colour preference of isolated Nile tilapia (Oreochromis niloticus) and whether previous residence or body size can affect environmental colour choice. In the first phase, a cylindrical tank was divided into five differently coloured compartments (yellow, blue, green, white and red), a single fish was introduced into the tank and the frequency at which this fish visited each compartment was recorded over a 2-day study period. An increasingly larger fish (approx +2 cm in length each time) was then added into the tank on each of days 3, 5 and 7 (=four fish in the tank by day 7), and the frequency at which each fish visited the different compartments of the tank was observed twice a day to obtain visit frequency data on the differently sized fishes. This experiment was replicated six times. In the first phase, the solitary fish established residence inside the yellow compartment on the first and second days. Following the introduction of a larger fish, the smaller fish was displaced from the occupied compartment. Nile tilapia possibly shows this preference for yellow as a function of its visual spectral sensitivity and/or the spectral characteristics of its natural environment. Moreover, body size is an important factor in determining hierarchical dominance and territorial defence, and dominant fish chose the preferred environmental colour compartment as their territory.
Resumo:
A number of attempts have been made to obtain a clear definition of biological stress. However, in spite of the efforts, some controversies on the concept of plant stress remain. The current versions are centered either on the cause (stress factor) or on the effect (stress response) of environmental stress. The objective of this study was to contribute to the definition of stress, using a hierarchical approach. Thus, we have performed an analysis of the most usual stress concepts and tested the relevance of considering different observation scales in a study on plant response to water deficit. Seedlings of Eucalyptus grandis were grown in vitro at water potentials ranging from -0.16 to -0.6 MPa, and evaluated according to growth and biochemical parameters. Data were analyzed through principal component analysis (PCA), which pointed to a hierarchical organization in plant responses to environmental disturbances. Growth parameters (height and dry weight) are more sensitive to water deficit than biochemical ones (sugars, proline, and protein), suggesting that higher hierarchical levels were more sensitive to environmental constraints than lower hierarchical ones. We suggest that before considering an environmental fluctuation as stressful, it is necessary to take into account different levels of plant response, and that the evaluation of the effects of environmental disturbances on an organism depends on the observation scale being used. Hence, a more appropriate stress concept should consider the hierarchical organization of the biological systems, not only for a more adequate theoretical approach, but also for the improvement of practical studies on plants under stress.
Resumo:
We consider the management branch model where the random resources of the subsystem are given by the exponential distributions. The determinate equivalent is a block structure problem of quadratic programming. It is solved effectively by means of the decomposition method, which is based on iterative aggregation. The aggregation problem of the upper level is resolved analytically. This overcomes all difficulties concerning the large dimension of the main problem.
Resumo:
Mobile robots need autonomy to fulfill their tasks. Such autonomy is related whith their capacity to explorer and to recognize their navigation environments. In this context, the present work considers techniques for the classification and extraction of features from images, using artificial neural networks. This images are used in the mapping and localization system of LACE (Automation and Evolutive Computing Laboratory) mobile robot. In this direction, the robot uses a sensorial system composed by ultrasound sensors and a catadioptric vision system equipped with a camera and a conical mirror. The mapping system is composed of three modules; two of them will be presented in this paper: the classifier and the characterizer modules. Results of these modules simulations are presented in this paper.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)