980 resultados para Juárez, Laura
Resumo:
Introduction Hydrogels prepared from star-shaped poly(ethylene glycol) (PEG) and maleimide-functionalized heparin provide a potential matrix for use in developing three dimensional (3D) models. We have previously demonstrated that these hydrogels support the cultivation of human umbilical vein endothelial cells (HUVECs). We extend this body of work to study the ability to create an extracellular matrix (ECM)-like model to study breast and prostate cancer cell growth in 3D. Also, we investigate the ability to produce a tri-culture mimicking tumour angiogenesis with cancer spheroids, HUVECs and mesenchymal stem cells (MSCs). Materials and Methods The breast cancer cell lines, MCF-7 and MDA-MB-231, and prostate cancer cell lines, LNCaP and PC3, were seeded into starPEG-heparin hydrogels and grown for 14 Days to analyze the effects of varying hydrogel stiffness on spheroid development. Resulting hydrogel constructs were analyzed via proliferation assays, light microscopy, and immunostaining. Cancer cell lines were then seeded into starPEG-heparin hydrogels functionalized with growth factors as spheroids with HUVECs and MSCs and grown as a tri-culture. Cultures were analyzed via immunostaining and observed using confocal microscopy. Results Cultures prepared in MMP-cleavable starPEG-heparin hydrogels display spheroid formation in contrast to adherent growth on tissue culture plastic. Small differences were visualized in cancer spheroid growth between different gel stiffness across the range of cell lines. Cancer cell lines were able to be co-cultivated with HUVECs and MSC. Interaction was visualized between tumours and HUVECs via confocal microscopy. Further studies intend to further optimize and mimic the ECM environment of in-situ tumour angiogenesis. Discussion Our results confirm the suitability of hydrogels constructed from starPEG-heparin for HUVEC and MSC co-cultivation with cancer cell lines to study cell-cell and cell-matrix interactions in a 3D environment. This represents a step forward in the development of 3D culture models to study the pathomechanisms of breast and prostate cancer.
Resumo:
Introduction Hydrogels prepared from poly(ethylene glycol) (PEG) and maleimide-functionalized heparin provide a potential matrix for use in developing three dimensional (3D) models. We have previously demonstrated that these hydrogels support the cultivation of human umbilical vein endothelial cells (HUVECs) (1). We extend this body of work to study the ability to create an extracellular matrix (ECM)-like model to study breast and prostate cancer cell growth in 3D. Also, we investigate the ability to produce a tri-culture mimicking tumour angiogenesis with cancer spheroids, HUVECs and mesenchymal stem cells (MSC). Materials and Methods The breast cancer cell lines, MCF-7 and MDA-MB-231, and prostate cancer cell lines, LNCaP and PC3, were seeded into starPEG-heparin hydrogels and grown for 14 Days to analyse the effects of varying hydrogel stiffness on spheroid development. Resulting hydrogel constructs were analyzed via Alamar Blue assays, light microscopy, and immunofluorescence staining for cytokeratin 8/18, Ki67 and E-Cadherin. Cancer cell lines were then pre-grown in hydrogels for 5-7 days and then re-seeded into starPEG-heparin hydrogels functionalised with RGD, SDF-1, bFGF and VEGF as spheroids with HUVECs and MSC and grown for 14 days as a tri-culture in Endothelial Cell Growth Medium (ECGM; Promocell). Cell lines were also seeded as a single cell suspension into the functionalised tri-culture system. Cultures were fixed in 4% paraformaldehyde and analysed via immunostaining for Von Willebrand Factor and CD31, as well as the above mentioned markers, and observed using confocal microscopy. Results Cultures prepared in MMP-cleavable starPEG-heparin hydrogels display spheroid formation in contrast to adherent growth on tissue culture plastic. Small differences were visualised in cancer spheroid growth between different gel stiffness across the range of cell lines. Cancer cell lines were able to be co-cultivated with HUVECs and MSC. HUVEC tube formation and cancer line spheroid formation occured after 3-4 days. Interaction was visualised between tumours and HUVECs via confocal microscopy. Slightly increased interaction was seen between cancer tumours and micro-vascular tubes when seeded as single cells compared with the pre-formed spheroid approach. Further studies intend to utilise cytokine gradients to further optimise the ECM environment of in situ tumour angiogenesis. Discussion and Conclusions Our results confirm the suitability of hydrogels constructed from starPEG-heparin for HUVECs and MSC co-cultivation with cancer cell lines to study cell-cell and cell-matrix interactions in a 3D environment. This represents a step forward in the development of 3D culture models to study the pathomechanisms of breast and prostate cancer. References 1. Tsurkan MV, Chwalek K, Prokoph S, Zieris A, Levental KR, Freudenberg U, Werner C. Advanced Materials. 25, 2606-10, 2013. Disclosures The authors declare no conflicts of interest
Resumo:
Context Cancer patients experience a broad range of physical and psychological symptoms as a result of their disease and its treatment. On average, these patients report ten unrelieved and co-occurring symptoms. Objectives To determine if subgroups of oncology outpatients receiving active treatment (n=582) could be identified based on their distinct experience with thirteen commonly occurring symptoms; to determine whether these subgroups differed on select demographic, and clinical characteristics; and to determine if these subgroups differed on quality of life (QOL) outcomes. Methods Demographic, clinical, and symptom data from one Australian and two U.S. studies were combined. Latent class analysis (LCA) was used to identify patient subgroups with distinct symptom experiences based on self-report data on symptom occurrence using the Memorial Symptom Assessment Scale (MSAS). Results Four distinct latent classes were identified (i.e., All Low (28.0%), Moderate Physical and Lower Psych (26.3%), Moderate Physical and Higher Psych (25.4%), All High (20.3%)). Age, gender, education, cancer diagnosis, and presence of metastatic disease differentiated among the latent classes. Patients in the All High class had the worst QOL scores. Conclusion Findings from this study confirm the large amount of interindividual variability in the symptom experience of oncology patients. The identification of demographic and clinical characteristics that place patients are risk for a higher symptom burden can be used to guide more aggressive and individualized symptom management interventions.
Resumo:
Background No tool exists to measure self-efficacy for overcoming lymphedema-related exercise barriers in individuals with cancer-related lymphedema. However, an existing scale measures confidence to overcome general exercise barriers in cancer survivors. Therefore, the purpose of this study was to develop, validate and assess the reliability of a subscale, to be used in conjunction with the general barriers scale, for determining exercise barriers self-efficacy in individuals facing lymphedema-related exercise barriers. Methods A lymphedema-specific exercise barriers self-efficacy subscale was developed and validated using a cohort of 106 cancer survivors with cancer-related lymphedema, from Brisbane, Australia. An initial ten-item lymphedema-specific barrier subscale was developed and tested, with participant feedback and principal components analysis results used to guide development of the final version. Validity and test-retest reliability analyses were conducted on the final subscale. Results The final lymphedema-specific subscale contained five items. Principal components analysis revealed these items loaded highly (> 0.75) on a separate factor when tested with a well-established nine-item general barriers scale. The final five-item subscale demonstrated good construct and criterion validity, high internal consistency (Cronbach’s alpha=0.93) and test-retest reliability (ICC=0.67, p< 0.01). Conclusions A valid and reliable lymphedema-specific subscale has been developed to assess exercise barriers self-efficacy in individuals with cancer-related lymphedema. This scale can be used in conjunction with an existing general exercise barriers scale to enhance exercise adherence in this understudied patient group.
Resumo:
This paper is a review of the state of play of research linking videogaming and flourishing, and explores the role of videogames and technology to improve mental health and well-being. Its purpose is to develop understandings about the positive intersection of gaming and well-being, to document evidence regarding links between videogames and positive mental health, and to provide guidelines for use by other researchers as they design and use tools and games to improve mental health and well-being. Using Huppert's (Huppert and So, 2013) proposition that to flourish is more than the absence of mental disorder but rather a combination of feeling good and functioning effectively, resulting in high levels of mental well-being, and Seligman's (Seligman, 2011) PERMA theory of well-being, the paper identifies strengths in existing games that generate positive affect, positive functioning, and positive social functioning, contributing to, and supporting mental health and well-being.
Resumo:
Videogamers are often portrayed as adolescent overweight males eating fast food in their bedroom, and videogames often blamed in the media for violent crime, obesity, social isolation and depression. However videogaming is a mainstream activity. In Australia 65% of the population play videogames (Digital Australia 2014), and humanity as a species play about 3 billion hours of videogames a week. This paper dispels the myths and sensationalised negative tabloid headlines that videogames are bad by presenting the latest research showing that videogames can help fight depression, improve brain function and stimulate creativity; that gamers have higher levels of family closeness and better attachment to school; and that videogames help boys and young men to relax, cope and socialise. Children and adolescents deliberately choose to play videogames in the knowledge that they will feel better as a result, and videogame play allow players to express themselves in ways they may not feel comfortable doing in real life because of their appearance, gender, sexuality, and/or age. The potential benefits of videogames to the individual and to society are yet to be fully realised. However already videogames are helping many gamers to flourish in life.
Resumo:
Background Premature aging syndromes recapitulate many aspects of natural aging and provide an insight into this phenomenon at a molecular and cellular level. The progeria syndromes appear to cause rapid aging through disruption of normal nuclear structure. Recently, a coding mutation (c.34G > A [p.A12T]) in the Barrier to Autointegration Factor 1 (BANF1) gene was identified as the genetic basis of Néstor-Guillermo Progeria syndrome (NGPS). This mutation was described to cause instability in the BANF1 protein, causing a disruption of the nuclear envelope structure. Results Here we demonstrate that the BANF1 A12T protein is indeed correctly folded, stable and that the observed phenotype, is likely due to the disruption of the DNA binding surface of the A12T mutant. We demonstrate, using biochemical assays, that the BANF1 A12T protein is impaired in its ability to bind DNA while its interaction with nuclear envelope proteins is unperturbed. Consistent with this, we demonstrate that ectopic expression of the mutant protein induces the NGPS cellular phenotype, while the protein localizes normally to the nuclear envelope. Conclusions Our study clarifies the role of the A12T mutation in NGPS patients, which will be of importance for understanding the development of the disease.
Resumo:
Mandatory reporting is a key aspect of Australia’s approach to protecting children and is incorporated into all jurisdictions’ legislation, albeit in a variety of forms. In this article we examine all major newspaper’s coverage of mandatory reporting during an 18-month period in 2008-2009, when high-profile tragedies and inquiries occurred and significant policy and reform agendas were being debated. Mass media utilise a variety of lenses to inform and shape public responses and attitudes to reported events. We use frame analysis to identify the ways in which stories were composed and presented, and how language portrayed this contested area of policy. The results indicate that within an overall portrayal of system failure and the need for reform, the coverage placed major responsibility on child protection agencies for the over-reporting, under-reporting, and overburdened system identified, along with the failure of mandatory reporting to reduce risk. The implications for ongoing reform are explored along with the need for robust research to inform debate about the merits of mandatory reporting.
Resumo:
Tumour microenvironment greatly influences the development and metastasis of cancer progression. The development of three dimensional (3D) culture models which mimic that displayed in vivo can improve cancer biology studies and accelerate novel anticancer drug screening. Inspired by a systems biology approach, we have formed 3D in vitro bioengineered tumour angiogenesis microenvironments within a glycosaminoglycan-based hydrogel culture system. This microenvironment model can routinely recreate breast and prostate tumour vascularisation. The multiple cell types cultured within this model were less sensitive to chemotherapy when compared with two dimensional (2D) cultures, and displayed comparative tumour regression to that displayed in vivo. These features highlight the use of our in vitro culture model as a complementary testing platform in conjunction with animal models, addressing key reduction and replacement goals of the future. We anticipate that this biomimetic model will provide a platform for the in-depth analysis of cancer development and the discovery of novel therapeutic targets.
Resumo:
GVHD remains the major complication of allo-HSCT. Murine models are the primary system used to understand GVHD, and to develop potential therapies. Several factors are critical for GVHD in these models; including histo- compatibility, conditioning regimen, and T-cell number. We serendipitously found that environmental factors such as the caging system and bedding also significantly impact the kinetics of GVHD in these models. This is important because such factors may influence the experimental conditions required to cause GVHD and how mice respond to various treatments. Consequently, this is likely to alter interpretation of results between research groups, and the perceived effectiveness of experimental therapies.
Resumo:
Background: Multipotent mesenchymal stromal cells suppress T-cell function in vitro, a property that has underpinned their use in treating clinical steroid-refractory graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. However the potential of mesenchymal stromal cells to resolve graft-versus-host disease is confounded by a paucity of pre-clinical data delineating their immunomodulatory effects in vivo. Design and Methods: We examined the influence of timing and dose of donor-derived mesenchymal stromal cells on the kinetics of graft-versus-host disease in two murine models of graft-versus-host disease (major histocompatibility complex-mismatched: UBI-GFP/BL6 [H-2b]→BALB/c [H-2d] and the sibling transplant mimic, UBI-GFP/BL6 [H-2b]→BALB.B [H-2b]) using clinically relevant conditioning regimens. We also examined the effect of mesenchymal stromal cell infusion on bone marrow and spleen cellular composition and cytokine secretion in transplant recipients. Results: Despite T-cell suppression in vitro, mesenchymal stromal cells delayed but did not prevent graft-versus-host disease in the major histocompatibility complex-mismatched model. In the sibling transplant model, however, 30% of mesenchymal stromal cell-treated mice did not develop graft-versus-host disease. The timing of administration and dose of the mesenchymal stromal cells influenced their effectiveness in attenuating graft-versus-host disease, such that a low dose of mesenchymal stromal cells administered early was more effective than a high dose of mesenchymal stromal cells given late. Compared to control-treated mice, mesenchymal stromal cell-treated mice had significant reductions in serum and splenic interferon-γ, an important mediator of graft-versus-host disease. Conclusions: Mesenchymal stromal cells appear to delay death from graft-versus-host disease by transiently altering the inflammatory milieu and reducing levels of interferon-γ. Our data suggest that both the timing of infusion and the dose of mesenchymal stromal cells likely influence these cells’ effectiveness in attenuating graft-versus-host disease.
Resumo:
Background Preparative myeloablative conditioning regimens for allogeneic hematopoietic stem-cell transplantation (HSCT) may control malignancy and facilitate engraftment but also contribute to transplant related mortality, cytokine release, and acute graft-versus-host disease (GVHD). Reduced intensity conditioning (RIC) regimens have decreased transplant related mortality but the incidence of acute GVHD, while delayed, remains unchanged. There are currently no in vivo allogeneic models of RIC HSCT, limiting studies into the mechanism behind RIC-associated GVHD. Methods We developed two RIC HSCT models that result in delayed onset GVHD (major histocompatibility complex mismatched (UBI-GFP/BL6 [H-2b]→BALB/c [H-2d]) and major histocompatibility complex matched, minor histocompatibility mismatched (UBI-GFP/BL6 [H-2b]→BALB.B [H-2b])) enabling the effect of RIC on chimerism, dendritic cell (DC) chimerism, and GVHD to be investigated. Results In contrast with myeloablative conditioning, we observed that RIC-associated delayed-onset GVHD is characterized by low production of tumor necrosis factor-α, maintenance of host DC, phenotypic DC activation, increased T-regulatory cell numbers, and a delayed emergence of activated donor DC. Furthermore, changes to the peritransplant milieu in the recipient after RIC lead to the altered activation of DC and the induction of T-regulatory responses. Reduced intensity conditioning recipients suffer less early damage to GVHD target organs. However, as donor cells engraft, activated donor DC and rising levels of tumor necrosis factor-α are associated with a later onset of severe GVHD. Conclusions Delineating the mechanisms underlying delayed onset GVHD in RIC HSCT recipients is vital to improve the prediction of disease onset and allow more targeted interventions for acute GVHD.
Resumo:
Two-dimensional (2D) substrates cannot accurately mimic the complex matrix of native TME, whereas 3D models can recapitulate the natural tumour progression in vitro. As part of the tumour stroma, fibroblasts and endothelial cells (ECs) are well-known to not only support tumour growth but also to reduce the efficacy of anti-cancer drugs. Particularly, ECs are involved in the process of tumour vascularisation which represents a crucial step in the progression of cancer. Most of the previous studies are carried out in animal models or 2D cultures; hence, a detailed evaluation of experimental data is poor. To address this issue, we aim to develop a novel 3D in vitro approach, to mimic native tumour angiogenesis in 3D and to quantify the developed vascular network.
Resumo:
The silk protein fibroin (Bombyx mori) provides a potential substrate for use in ocular tissue reconstruction. We have previously demonstrated that transparent membranes produced from fibroin support cultivation of human limbal epithelial (HLE) cells (Tissue Eng A. 14(2008)1203-11). We extend this body of work to studies of limbal mesenchymal stromal cell (L-MSC) growth on fibroin. Also, we investigate the ability to produce a fibroin dual-layer scaffold with an upper HLE layer and lower L-MSC layer...
Resumo:
Host and donor dendritic cells (DC) stimulate alloreactive donor T lymphocytes, and initiate GVHD. We have shown that polyclonal antibody to the DC surface activation marker human CD83 (anti hCD83), which depletes activated DC, can prevent human DC and T cell induced lethal xenogeneic GVHD in SCID mice without impairing T cell mediated anti-leukaemic and anti-viral (CMV and influenza) immunity (J Exp Med 2009; 206: 387). Therefore, we made and tested a polyclonal anti mouse CD83 (RAM83) antibody in murine HSCT models and developed a human mAb against hCD83 as a potential new therapeutic immunosuppressive agent.