1000 resultados para Isotope Age
Resumo:
Oceanic zircon trace element and Hf-isotope geochemistry offers a means to assess the magmatic evolution of a dying spreading ridge and provides an independent evaluation of the reliability of oceanic zircon as an indicator of mantle melting conditions. The Macquarie Island ophiolite in the Southern Ocean provides a unique testing ground for this approach due to its formation within a mid-ocean ridge that gradually changed into a transform plate boundary. Detrital zircon recovered from the island records this change through a progressive enrichment in incompatible trace elements. Oligocene age (33-27 Ma) paleo-detrital zircon in ophiolitic sandstones and breccias interbedded with pillow basalt have trace element compositions akin to a MORB crustal source, whereas Late Miocene age (8.5 Ma) modern-detrital zircon collected from gabbroic colluvium on the island have highly enriched compositions unlike typical oceanic zircon. This compositional disparity between age populations is not complimented by analytically equivalent eHf data that primarily ranges from 14 to 13 for sandstone and modern-detrital populations. A wider compositional range for the sandstone population reflects a multiple pluton source provenance and is augmented by a single cobble clast with eHf equivalent to the maximum observed composition in the sandstone (~17). Similar sandstone and colluvium Hf-isotope signatures indicate inheritance from a similar mantle reservoir that was enriched from the depleted MORB mantle average. The continuity in Hf-isotope signature relative to trace element enrichment in Macquarie Island zircon populations, suggests the latter formed by reduced partial melting linked to spreading-segment shortening and transform lengthening along the dying spreading ridge.
Resumo:
This study presents neodymium isotope and elemental data for cleaned planktonic foraminifera from ODP site 758 in the southernmost reaches of the Bay of Bengal in the north-east Indian Ocean. Cleaning experiments using oxidative-reductive techniques suggest that diagenetic Fe-Mn oxyhydroxide coatings can be effectively removed, and that the measured Nd isotope composition reflects the composition of seawater from which the foraminiferal calcium carbonate was precipitated. Modern core-top Pulleniatina obliquiloculata and Globorotalia menardii give epsilon-Nd values of 310.12 +/- 0.16 and 310.28 +/- 0.16, respectively, indistinguishable from recent direct measurements of surface seawater in this area. A high-resolution Nd isotope record obtained from G. menardii for the past 150 kyr shows systematic variations (Delta epsilon-Nd = 3) on glacial-interglacial timescales. The timing of those variations shows a remarkable correspondence with the global oxygen isotope record, which suggests a process controlling the Nd isotope composition that responds in phase with global climate cycles. Palaeoclimate reconstruction indicates that during the last glacial maximum changes in monsoon circulation resulted in a reduction in rainfall over the Indian subcontinent, and a decrease in the flux of river water delivered to the Bay of Bengal. Thus, changes in the riverine input of Nd, a change in either flux or composition, most likely caused the isotope variations, although changes in dust source or local ocean circulation may have also played a role. These results clearly establish a link between climate change and variations in radiogenic isotopes in the oceans, and illustrate the potential of Nd isotopes in foraminifera for highresolution palaeoceanographic reconstruction.
Resumo:
We present new high-resolution N isotope records from the Gulf of Tehuantepec and the Nicaragua Basin spanning the last 50-70 ka. The Tehuantepec site is situated within the core of the north subtropical denitrification zone while the Nicaragua site is at the southern boundary. The d15N record from Nicaragua shows an 'Antarctic' timing similar to denitrification changes observed off Peru-Chile but is radically different from the northern records. We attribute this to the leakage of isotopically heavy nitrate from the South Pacific oxygen minimum zone (OMZ) into the Nicaragua Basin. The Nicaragua record leads the other eastern tropical North Pacific (ETNP) records by about 1000 years because denitrification peaks in the eastern tropical South Pacific (ETSP) before denitrification starts to increase in the Northern Hemisphere OMZ, i.e., during warming episodes in Antarctica. We find that the influence of the heavy nitrate leakage from the ETSP is still noticeable, although attenuated, in the Gulf of Tehuantepec record, particularly at the end of the Heinrich events, and tends to alter the recording of millennial timescale denitrification changes in the ETNP. This implies (1) that sedimentary d15N records from the southern parts of the ETNP cannot be used straightforwardly as a proxy for local denitrification and (2) that denitrification history in the ETNP, like in the Arabian Sea, is synchronous with Greenland temperature changes. These observations reinforce the conclusion that on millennial timescales during the last ice age, denitrification in the ETNP is strongly influenced by climatic variations that originated in the high-latitude North Atlantic region, while commensurate changes in Southern Ocean hydrography more directly, and slightly earlier, affected oxygen concentrations in the ETSP. Furthermore, the d15N records imply ongoing physical communication across the equator in the shallow subsurface continuously over the last 50-70 ka.
Resumo:
This paper presents the first study of Tl isotopes in early diagenetic pyrite. Measurements from two sections deposited during the Toarcian Ocean Anoxic Event (T-OAE, ~183 Ma) are compared with data from Late Neogene (<10 Ma) pyrite samples from ODP legs 165 and 167 that were deposited in relatively oxic marine environments. The Tl isotope compositions of Late Neogene pyrites are all significantly heavier than seawater, which most likely indicates that Tl in diagenetic pyrite is partially sourced from ferromanganese oxy-hydroxides that are known to display relatively heavy Tl isotope signatures. One of the T-OAE sections from Peniche in Portugal displays pyrite thallium isotope compositions indistinguishable from Late Neogene samples, whereas samples from Yorkshire in the UK are depleted in the heavy isotope of Tl. These lighter compositions are best explained by the lack of ferromanganese precipitation at the sediment-water interface due to the sulfidic (euxinic) conditions thought to be prevalent in the Cleveland Basin where the Yorkshire section was deposited. The heavier signatures in the Peniche samples appear to result from an oxic water column that enabled precipitation of ferromanganese oxy-hydroxides at the sediment-water interface. The Tl isotope profile from Yorkshire is also compared with previously published molybdenum isotope ratios determined on the same sedimentary succession. There is a suggestion of an anti-correlation between these two isotope systems, which is consistent with the expected isotope shifts that occur in seawater when marine oxic (ferromanganese minerals) fluxes fluctuate. The results outlined here represent the first evidence that Tl isotopes in early diagenetic pyrite have potential to reveal variations in past ocean oxygenation on a local scale and potentially also for global oceans. However, much more information about Tl isotopes in different marine environments, especially in anoxic/euxinic basins, is needed before Tl isotopes can be confidently utilized as a paleo-redox tracer.
Resumo:
Benthic foraminiferal stable carbon isotope records from the South Atlantic show significant declines toward more "Pacific-like" values at ~7 and ~2.7 Ma, and it has been posited that these shifts may mark steps toward increased CO2 sequestration in the deep Southern Ocean as climate cooled over the late Neogene. We generated new stable isotope records from abyssal subantarctic Pacific cores MV0502-4JC and ELT 25-11. The record from MV0502-4JC suggests that the Southern Ocean remained well mixed and free of vertical or interbasinal d13C gradients following the late Miocene carbon shift (LMCS). According to the records from MV0502-4JC and ELT 25-11, however, cold, low d13C bottom waters developed in the Southern Ocean in the late Pliocene and persisted until ~1.7 Ma. These new data suggest that while conditions in the abyssal Southern Ocean following the LMCS were comparable to the present day, sequestration of respired CO2 may have increased in the deepest parts of the Southern Ocean during the late Pliocene, a critical period for the growth and establishment of the Northern Hemisphere ice sheets.
Resumo:
Pleistocene stable carbon isotope (d13C) records from surface and deep dwelling foraminifera in all major ocean basins show two distinct long-term carbon isotope fluctuations since 1.00 Ma. The first started around 1.00 Ma and was characterised by a 0.35 per mil decrease in d13C values until 0.90 Ma, followed by an increase of 0.60 per mil lasting until 0.50 Ma. The subsequent fluctuation started with a 0.40 per mil decrease between 0.50 and 0.25 Ma, followed by an increase of 0.30 per mil between 0.25 and 0.10 Ma. Here, we evaluate existing evidence and various hypotheses for these global Pleistocene d13C fluctuations and present an interpretation, where the fluctuations most likely resulted from concomitant changes in the burial fluxes of organic and inorganic carbon due to ventilation changes and/or changes in the production and export ratio. Our model indicates that to satisfy the long-term 'stability' of the Pleistocene lysocline, the ratio between the amounts of change in the organic and inorganic carbon burial fluxes would have to be close to a 1:1 ratio, as deviations from this ratio would lead to sizable variations in the depth of the lysocline. It is then apparent that the mid-Pleistocene climate transition, which, apart from the glacial cycles, represents the most fundamental change in the Pleistocene climate, was likely not associated with a fundamental change in atmospheric pCO2. While recognising that high frequency glacial/interglacial cycles are associated with relatively large (100 ppmv) changes in pCO2, our model scenario (with burial changes close to a 1:1 ratio) produces a maximum long-term variability of only 20 ppmv over the fluctuation between 1.00 and 0.50 Ma.
Resumo:
A rapid increase in greenhouse gas levels is thought to have fueled global warming at the Paleocene-Eocene Thermal Maximum (PETM). Foraminiferal magnesium/calcium ratios indicate that bottom waters warmed by 4° to 5°C, similar to tropical and subtropical surface ocean waters, implying no amplification of warming in high-latitude regions of deep-water formation under ice-free conditions. Intermediate waters warmed before the carbon isotope excursion, in association with downwelling in the North Pacific and reduced Southern Ocean convection, supporting changing circulation as the trigger for methane hydrate release. A switch to deep convection in the North Pacific at the PETM onset could have amplified and sustained warming.
Monte Carlo average of stable carbon isotope ratio of atmospheric CO2 from three Antarctic ice cores
Resumo:
The stable carbon isotope ratio of atmospheric CO2 (d13Catm) is a key parameter in deciphering past carbon cycle changes. Here we present d13Catm data for the past 24,000 years derived from three independent records from two Antarctic ice cores. We conclude that a pronounced 0.3 per mil decrease in d13Catm during the early deglaciation can be best explained by upwelling of old, carbon-enriched waters in the Southern Ocean. Later in the deglaciation, regrowth of the terrestrial biosphere, changes in sea surface temperature, and ocean circulation governed the d13Catm evolution. During the Last Glacial Maximum, d13Catm and atmospheric CO2 concentration were essentially constant, which suggests that the carbon cycle was in dynamic equilibrium and that the net transfer of carbon to the deep ocean had occurred before then.