921 resultados para Islanding Detection, Distributed Generation, Power Electronics, Smart Grid, Renewable Generation
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Depuis que l'électricité a été découverte et que le secteur électrique s'est considérablement développé dans le XVIIIe siècle, jamais l'homme n'a pu se détacher de cette énergie. Pendant longtemps le système d'énergie électrique a fonctionné sans grand changement, mais avec le développement rapide des technologies, de nouvelles améliorations apparaissent. Ce mémoire traite des nouveaux concepts de réseaux d'énergie électrique appelés Réseaux intelligents ou Smart Grid. À travers un panorama de leurs développements dans le monde, cette étude porte d'une part, sur l'avancée des projets dans quelques pays et d'autre part, du niveau de développement de ce réseau au Brésil et de son intérêt pour le pays. L'étude a comme point central un des composants de ce réseau intelligent, le compteur communicant, qui est l'élément essentiel des interconnexions entre consommateurs et producteurs. Ce rapport apporte un éclaircissement sur les compteurs conventionnels et les compteurs intelligents et sur leur mode de fonctionnement. Enfin il aborde la question des consommateurs : par quels moyens leur transmettre tous ces changements à venir, puisque jusqu'à présent, leur seule participation était de payer l'énergie consommée. Avec le nouveau réseau, ils deviendront de véritables acteurs puisqu'ils seront informés en temps réel de leur consommation d'énergie électrique. Pour terminer, le mémoire montrera comment ils pourront s'adapter à cette nouvelle façon de gérer leur consommation en ésperant les inciter à une utilisation plus raisonnable de l'énergie et à modifier leur comportement en gérant de manière active leur consommation en intégrant notamment les énergies renouvelables
Resumo:
In this paper, we will present an overview of the smart grid defining the three main systems that compose it: smart infrastructure system, smart management system and smart protection system. We will conceptualize a functionality of smart management system, the conservative voltage reduction, citing its benefits and its history of application. And, finally, we'll cover a test in which we reduce the nominal voltages on incandescent bulbs, CFL and LED, in the context of residential lighting, and on LED and HPS, in the context of public lighting. The test aims to check whether the voltage reduction adversely affects sources of lighting by measuring the temperature manually with a thermal imaging camera FLIR and illuminance with a LUX meter. The set of power factor, total harmonic distortion, and input power values will be collected automatically through the power quality Analyzer Fluke 345 with a probe Fluke Hall Effect Current. For residential lighting, it was found that both CFL and LED had good performance with the smallest variations in illuminance. Between both, the LED source had the lowest harmonics and the lowest power consumption, on the other hand incandescent bulbs had a bad performance as expected. Public light sources also had a good performance and obtained power factors within the standards, as opposed to the CFL and LED residential sources. The data collected clearly shows the feasibility for nominal voltage reductions. Even with small reductions, there are possibilities of savings which can be passed on to the utilities and consumers
Resumo:
Depuis que l'électricité a été découverte et que le secteur électrique s'est considérablement développé dans le XVIIIe siècle, jamais l'homme n'a pu se détacher de cette énergie. Pendant longtemps le système d'énergie électrique a fonctionné sans grand changement, mais avec le développement rapide des technologies, de nouvelles améliorations apparaissent. Ce mémoire traite des nouveaux concepts de réseaux d'énergie électrique appelés Réseaux intelligents ou Smart Grid. À travers un panorama de leurs développements dans le monde, cette étude porte d'une part, sur l'avancée des projets dans quelques pays et d'autre part, du niveau de développement de ce réseau au Brésil et de son intérêt pour le pays. L'étude a comme point central un des composants de ce réseau intelligent, le compteur communicant, qui est l'élément essentiel des interconnexions entre consommateurs et producteurs. Ce rapport apporte un éclaircissement sur les compteurs conventionnels et les compteurs intelligents et sur leur mode de fonctionnement. Enfin il aborde la question des consommateurs : par quels moyens leur transmettre tous ces changements à venir, puisque jusqu'à présent, leur seule participation était de payer l'énergie consommée. Avec le nouveau réseau, ils deviendront de véritables acteurs puisqu'ils seront informés en temps réel de leur consommation d'énergie électrique. Pour terminer, le mémoire montrera comment ils pourront s'adapter à cette nouvelle façon de gérer leur consommation en ésperant les inciter à une utilisation plus raisonnable de l'énergie et à modifier leur comportement en gérant de manière active leur consommation en intégrant notamment les énergies renouvelables
Resumo:
In this paper, we will present an overview of the smart grid defining the three main systems that compose it: smart infrastructure system, smart management system and smart protection system. We will conceptualize a functionality of smart management system, the conservative voltage reduction, citing its benefits and its history of application. And, finally, we'll cover a test in which we reduce the nominal voltages on incandescent bulbs, CFL and LED, in the context of residential lighting, and on LED and HPS, in the context of public lighting. The test aims to check whether the voltage reduction adversely affects sources of lighting by measuring the temperature manually with a thermal imaging camera FLIR and illuminance with a LUX meter. The set of power factor, total harmonic distortion, and input power values will be collected automatically through the power quality Analyzer Fluke 345 with a probe Fluke Hall Effect Current. For residential lighting, it was found that both CFL and LED had good performance with the smallest variations in illuminance. Between both, the LED source had the lowest harmonics and the lowest power consumption, on the other hand incandescent bulbs had a bad performance as expected. Public light sources also had a good performance and obtained power factors within the standards, as opposed to the CFL and LED residential sources. The data collected clearly shows the feasibility for nominal voltage reductions. Even with small reductions, there are possibilities of savings which can be passed on to the utilities and consumers
Resumo:
Trigeneration systems have been used with advantage in the last years in distributed electricity generation systems as a function of a growth of natural gas pipeline network distribution system, tax incentives, and energy regulation policies. Typically, a trigeneration system is used to produce electrical power simultaneously with supplying heating and cooling load by recovering the combustion products thermal power content that otherwise would be driven to atmosphere. Concerning that, two small scale trigeneration plants have been tested for overall efficiency evaluation and operational comparison. The first system is based on a 30 kW (ISO) natural gas powered microturbine, and the second one uses a 26 kW natural gas powered internal combustion engine coupled to an electrical generator as a prime mover. The stack gases from both machines were directed to a 17.6 kW ammonia-water absorption refrigeration chiller for producing chilled water first and next to a water heat recovery boiler in order to produce hot water. Experimental results are presented along with relevant system operational parameters for appropriate operation including natural gas consumption, net electrical and thermal power production, i.e., hot and cold water production rates, primary energy saving index, and the energy utilization factor over total and partial electrical load operational conditions. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Bioinformatics is a recent and emerging discipline which aims at studying biological problems through computational approaches. Most branches of bioinformatics such as Genomics, Proteomics and Molecular Dynamics are particularly computationally intensive, requiring huge amount of computational resources for running algorithms of everincreasing complexity over data of everincreasing size. In the search for computational power, the EGEE Grid platform, world's largest community of interconnected clusters load balanced as a whole, seems particularly promising and is considered the new hope for satisfying the everincreasing computational requirements of bioinformatics, as well as physics and other computational sciences. The EGEE platform, however, is rather new and not yet free of problems. In addition, specific requirements of bioinformatics need to be addressed in order to use this new platform effectively for bioinformatics tasks. In my three years' Ph.D. work I addressed numerous aspects of this Grid platform, with particular attention to those needed by the bioinformatics domain. I hence created three major frameworks, Vnas, GridDBManager and SETest, plus an additional smaller standalone solution, to enhance the support for bioinformatics applications in the Grid environment and to reduce the effort needed to create new applications, additionally addressing numerous existing Grid issues and performing a series of optimizations. The Vnas framework is an advanced system for the submission and monitoring of Grid jobs that provides an abstraction with reliability over the Grid platform. In addition, Vnas greatly simplifies the development of new Grid applications by providing a callback system to simplify the creation of arbitrarily complex multistage computational pipelines and provides an abstracted virtual sandbox which bypasses Grid limitations. Vnas also reduces the usage of Grid bandwidth and storage resources by transparently detecting equality of virtual sandbox files based on content, across different submissions, even when performed by different users. BGBlast, evolution of the earlier project GridBlast, now provides a Grid Database Manager (GridDBManager) component for managing and automatically updating biological flatfile databases in the Grid environment. GridDBManager sports very novel features such as an adaptive replication algorithm that constantly optimizes the number of replicas of the managed databases in the Grid environment, balancing between response times (performances) and storage costs according to a programmed cost formula. GridDBManager also provides a very optimized automated management for older versions of the databases based on reverse delta files, which reduces the storage costs required to keep such older versions available in the Grid environment by two orders of magnitude. The SETest framework provides a way to the user to test and regressiontest Python applications completely scattered with side effects (this is a common case with Grid computational pipelines), which could not easily be tested using the more standard methods of unit testing or test cases. The technique is based on a new concept of datasets containing invocations and results of filtered calls. The framework hence significantly accelerates the development of new applications and computational pipelines for the Grid environment, and the efforts required for maintenance. An analysis of the impact of these solutions will be provided in this thesis. This Ph.D. work originated various publications in journals and conference proceedings as reported in the Appendix. Also, I orally presented my work at numerous international conferences related to Grid and bioinformatics.
Resumo:
This dissertation deals with the development of a project concerning a demonstration in the scope of the Supply Chain 6 of the Internet of Energy (IoE) project: the Remote Monitoring Emulator, which bears my personal contribution in several sections. IoE is a project of international relevance, that means to establish an interoperability standard as regards the electric power production and utilization infrastructure, using Smart Space platforms. The future perspectives of IoE have to do with a platform for electrical power trade-of, the Smart Grid, whose energy is produced by decentralized renewable sources and whose services are exploited primarily according to the Internet of Things philosophy. The main consumers of this kind of smart technology will be Smart Houses (that is to say, buildings controlled by an autonomous system for electrical energy management that is interoperable with the Smart Grid) and Electric Mobility, that is a smart and automated management regarding movement and, overall, recharging of electrical vehicles. It is precisely in the latter case study that the project Remote Monitoring Emulator takes place. It consists in the development of a simulated platform for the management of an electrical vehicle recharging in a city. My personal contribution to this project lies in development and modeling of the simulation platform, of its counterpart in a mobile application and implementation of a city service prototype. This platform shall, ultimately, make up a demonstrator system exploiting the same device which a real user, inside his vehicle, would use. The main requirements that this platform shall satisfy will be interoperability, expandability and relevance to standards, as it needs to communicate with other development groups and to effectively respond to internal changes that can affect IoE.
Resumo:
In the framework of the micro-CHP (Combined Heat and Power) energy systems and the Distributed Generation (GD) concept, an Integrated Energy System (IES) able to meet the energy and thermal requirements of specific users, using different types of fuel to feed several micro-CHP energy sources, with the integration of electric generators of renewable energy sources (RES), electrical and thermal storage systems and the control system was conceived and built. A 5 kWel Polymer Electrolyte Membrane Fuel Cell (PEMFC) has been studied. Using experimental data obtained from various measurement campaign, the electrical and CHP PEMFC system performance have been determinate. The analysis of the effect of the water management of the anodic exhaust at variable FC loads has been carried out, and the purge process programming logic was optimized, leading also to the determination of the optimal flooding times by varying the AC FC power delivered by the cell. Furthermore, the degradation mechanisms of the PEMFC system, in particular due to the flooding of the anodic side, have been assessed using an algorithm that considers the FC like a black box, and it is able to determine the amount of not-reacted H2 and, therefore, the causes which produce that. Using experimental data that cover a two-year time span, the ageing suffered by the FC system has been tested and analyzed.
Resumo:
Progettazione di un sistema di misura contactless per la tensione, da integrare in un nodo sensore di una Wireless Sensor Network per Smart Metering Distribuito
Resumo:
In power electronic basedmicrogrids, the computational requirements needed to implement an optimized online control strategy can be prohibitive. The work presented in this dissertation proposes a generalized method of derivation of geometric manifolds in a dc microgrid that is based on the a-priori computation of the optimal reactions and trajectories for classes of events in a dc microgrid. The proposed states are the stored energies in all the energy storage elements of the dc microgrid and power flowing into them. It is anticipated that calculating a large enough set of dissimilar transient scenarios will also span many scenarios not specifically used to develop the surface. These geometric manifolds will then be used as reference surfaces in any type of controller, such as a sliding mode hysteretic controller. The presence of switched power converters in microgrids involve different control actions for different system events. The control of the switch states of the converters is essential for steady state and transient operations. A digital memory look-up based controller that uses a hysteretic sliding mode control strategy is an effective technique to generate the proper switch states for the converters. An example dcmicrogrid with three dc-dc boost converters and resistive loads is considered for this work. The geometric manifolds are successfully generated for transient events, such as step changes in the loads and the sources. The surfaces corresponding to a specific case of step change in the loads are then used as reference surfaces in an EEPROM for experimentally validating the control strategy. The required switch states corresponding to this specific transient scenario are programmed in the EEPROM as a memory table. This controls the switching of the dc-dc boost converters and drives the system states to the reference manifold. In this work, it is shown that this strategy effectively controls the system for a transient condition such as step changes in the loads for the example case.
Resumo:
Es objeto del presente proyecto definir red inteligente (Smart Grid) como parte fundamental de un futuro sistema de generación, distribución y transporte de la energía, utilizando como medio principal de desplazamiento el Vehículo Eléctrico. El desarrollo del proyecto se lleva a cabo a través de un análisis exhaustivo del impacto de la introducción masiva del Vehículo Eléctrico en las redes de distribución. Para evaluar las simulaciones se han creado unos niveles de penetración de vehículos, así como el despliegue de dispositivos de recarga y hora óptima de conexión a la red para que la curva de demanda se suavice lo máximo posible y las infraestructuras eléctricas no sufran una sobrecarga provocando una caída del sistema eléctrico. Con un software específico, se ha obtenido un porcentaje de pérdidas y se han sacado unas conclusiones para los distintos casos de penetración del vehículo eléctrico. Asimismo, se ha analizado la implementación de un sistema que estudie los intercambios energéticos que se producen entre los diferentes sistemas del vehículo, y entre éste y su entorno para poder disminuir las pérdidas. ABSTRACT The objective of this project is to define Smart Grid as an essential part of a future generation system, distribution and transmission of energy, using Electric Vehicle as primary mean of moving. The development of this project was carried out through a comprehensive analysis of the impact of the massive introduction of electric vehicles in distribution networks. To evaluate the simulations, different indicators for vehicle´s penetration were created, as well as the deployment of charging devices and optimal time to get network connection in order to smooth the demand curve as much as possible and to avoid electrical infrastructure being overloaded and thus causing the electrical system to stop working. For each of the different cases of electric vehicles’ penetration a percentage of losses and conclusions were drawn using specific software. The implementation of a system that studies the exchanges of energy that occur between different vehicle systems and between itself and its environment to reduce losses was also analyzed.
Neural network controller for active demand side management with PV energy in the residential sector
Resumo:
In this paper, we describe the development of a control system for Demand-Side Management in the residential sector with Distributed Generation. The electrical system under study incorporates local PV energy generation, an electricity storage system, connection to the grid and a home automation system. The distributed control system is composed of two modules: a scheduler and a coordinator, both implemented with neural networks. The control system enhances the local energy performance, scheduling the tasks demanded by the user and maximizing the use of local generation.
Resumo:
The paper presents a method to analyze robust stability and transient performance of a distributed power system consisting of commercial converter modules interconnected through a common input filter. The method is based on the use of four transfer functions, which are measurable from the converter input and output terminals. It is shown that these parameters provide important information on the power module sensitivity to the interactions caused by the external impedances. Practical characterization for the described system structure is performed introducing special transfer functions utilized for the interactions assessment. Experimental results are provided to support the presented analysis procedure.
Resumo:
Among all the different types of electric wind generators, those that are based on doubly fed induction generators, or DFIG technology, are the most vulnerable to grid faults such as voltage sags. This paper proposes a new control strategy for this type of wind generator, that allows these devices to withstand the effects of a voltage sag while following the new requirements imposed by grid operators. This new control strategy makes the use of complementary devices such as crowbars unnecessary, as it greatly reduces the value of currents originated by the fault. This ensures less costly designs for the rotor systems as well as a more economic sizing of the necessary power electronics. The strategy described here uses an electric generator model based on space-phasor theory that provides a direct control over the position of the rotor magnetic flux. Controlling the rotor magnetic flux has a direct influence on the rest of the electrical variables enabling the machine to evolve to a desired work point during the transient imposed by the grid disturbance. Simulation studies have been carried out, as well as test bench trials, in order to prove the viability and functionality of the proposed control strategy.