976 resultados para Ionizing radiation
Resumo:
In order to protect food from pathogenic microorganisms as well as increase its shelf-life, while keeping sensorial properties (e.g., odor and taste), which are important properties required by spice buyers, it is necessary to analyze volatile formation from irradiation of medicinal and food herbs. Possible changes in the odor of these herbs are evaluated by characterizing different radiation doses and effects on sensorial properties, in order to allow better application of the irradiation technology. The aim of the present study was to analyze volatile formation on cinnamon (Laurus cinnamomum) samples after gamma irradiation. These samples were irradiated into plastic packages using a (60)Co facility. Radiation doses applied were 0, 5, 10, 15, 20 and 25 kGy. For the analysis of the samples, solid-phase microextraction (SPME) was applied, while for the analysis of volatile compounds, CG/MS. Spice irradiation showed the highest decrease in volatile compounds. For L. cinnamomum, the irradiation decreased volatile compounds by nearly 56% and 89.5%, respectively, comparing to volatile from a sample which had not been previously irradiated. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
Resumo:
In this study we assessed the protective effect of topical application of Pothomorphe umbellata extract on ultraviolet B (UVB)-induced skin lesion parameters in hairless mouse epidermis. A single dose of UVB irradiation (0.23 kJ/m(2)) resulted in a significant decrease in thymine dimer-positive cells and apoptotic sunburn cells, with an increase in p53 and proliferating cell nuclear antigen-positive cells in the epidermis. After 5 weeks (total dose 13.17 kJ/m(2)) and 15 weeks (total dose 55.51 kJ/m(2)) of irradiation, P. umbellata treatment inhibited the hyperplasic response and induced an increase in p53-positive cells. These findings suggest that P. umbellata extract affords protection against UVB-induced skin lesions.
Resumo:
Papain is a proteolytic enzyme that has been widely used as debridement agent for scars and wound healing treatment. However, papain presents low stability, which limits its use to extemporaneous or short shelf-life formulations. The purpose of this study was to entrap papain into a polymeric matrix in order to obtain a drug delivery system that could be used as medical device. Since these systems must be sterile, gamma radiation is an interesting option and presents advantages in relation to conventional agents: no radioactive residues are formed: the product can be sterilized inside the final packaging and has an excellent reliability. The normative reference for the establishment of the sterilizing dose determines 25 kGy as the inactivation dose for viable microorganisms. A silicone dispersion was selected to prepare membranes containing 2% (w/w) papain. Irradiated and non-irradiated membranes were simultaneously assessed in order to verify whether gamma radiation interferes with the drug-releasing profile. Results showed that irradiation does not affect significantly papain release and its activity. Therefore papain shows radioresistance in the irradiation conditions applied. In conclusion, gamma radiation can be easily used as sterilizing agent without affecting the papain release profile and its activity onto the biocompatible device is studied. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Conidia are responsible for reproduction, dispersal, environmental persistence and host infection of many fungal species. One of the main environmental factors that can kill and/or damage conidia is solar UV radiation. Cyclobutane pyrimidine dimers (CPD) are the major DNA photoproducts induced by UVB. We examined the conidial germination kinetics and the occurrence of CPD in DNA of conidia exposed to different doses of UVB radiation. Conidia of Aspergillus fumigatus, Aspergillus nidulans and Metarhizium acridum were exposed to UVB doses of 0.9, 1.8, 3.6 and 5.4 kJ m-2. CPD were quantified using T4 endonuclease V and alkaline agarose gel electrophoresis. Most of the doses were sublethal for all three species. Exposures to UVB delayed conidial germination and the delays were directly related both to UVB doses and CPD frequencies. The frequencies of dimers also were linear and directly proportional to the UVB doses, but the CPD yields differed among species. We also evaluated the impact of conidial pigmentation on germination and CPD induction on Metarhizium robertsii. The frequency of dimers in an albino mutant was approximately 10 times higher than of its green wild-type parent strain after exposure to a sublethal dose (1.8 kJ m-2) of UVB radiation.
Resumo:
Comparisons are made between experimental measurements and numerical simulations of ionizing flows generated in a superorbital facility. Nitrogen, with a freestream velocity of around 10 km/s, was passed over a cylindrical model, and images were recorded using two-wavelength holographic interferometry. The resulting density, electron concentration, and temperature maps were compared with numerical simulations from the Langley Research Center aerothermodynamic upwind relaxation algorithm. The results showed generally good agreement in shock location and density distributions. Some discrepancies were observed for the electron concentration, possibly, because simulations were of a two-dimensional flow, whereas the experiments were likely to have small three-dimensional effects.
Resumo:
Theoretical analyses have shown the radiation use efficiency of maize, soybean, and peanut to increase with a decrease in the level of incident radiation and an increase in the proportion of diffuse radiation. This study compared the growth and radiation use efficiency of Panicum maximum cv. Petrie (green panic) and Bothriochloa insculpta cv. Bisset (creeping bluegrass) beneath shading treatments (birdguard and solarweave shadecloths) with that in full sunlight. A level of incident radiation reduced by 25% under birdguard shadecloth decreased final yield and final leaf area index, but increased canopy leaf nitrogen concentration and radiation use efficiency (19-14%) (compared with the full sun treatment). A similar level of reduced incident radiation under solarweave shadecloth (which provided an increased proportion of diffuse radiation), increased final yield and radiation use efficiency (46-50%). An understanding of the effects of composition of incident radiation on radiation use efficiency of tropical grasses enables more accurate estimation of potential pasture growth in shaded environments. It also has impact upon crop production in glasshouses and greenhouses.
Resumo:
The gamma-radiolysis of poly(tetrafluoroethylene-co-perfluoromethyl vinyl ether) (TFE/PMVE) was investigated using chemical and mechanical analyses. The polymer was found to form an insoluble network with a dose of gelation of 15.8 kGy. Tensile and glass transition temperature measurements indicated the predominance of crosslinking, with optimal elastomeric properties reached in the dose range of 120 to 200 kGy. Photoacoustic FTIR spectroscopy CPAS) showed the formation of new carboxylic acid end groups on irradiation. These new end groups were shown to decrease the thermal oxidative stability of the crosslinked network as determined by thermal gravimetric analysis. Electron spin resonance (ESR) studies of the polymer at 77 K indicated the presence of radical precursors. A G-value of 1.1 was determined for radical production at 77 K. Comparison of radical concentrations for a copolymer with a different mole ratio of PMVE, indicated that the PMVE units contribute to scission reactions. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The radiolysis of nitrile rubbers with different acrylonitrile/butadiene composition and the homopolymers, poly(butadiene) (PBD) and poly(acrylonitrile) (PAN) has been investigated and compared with the photolysis of the same polymers. A significantly different mechanism of degradation was found for the two types of radiation. The results obtained by ESR, FTIR and measurements of soluble fractions of irradiated samples, indicated that the acrylonitrile units of the nitrile rubbers are more sensitive units to gamma-radiation, with the effects of irradiation increasing with the acrylonitrile content. The reactions observed were consumption of double bonds, crosslinking, and cyclization with the formation of conjugated double bonds. No chain-scission reactions were detected. In contrast to gamma-irradiation, the effects of photolysis were centred at the butadiene units, and increases in the acrylonitrile content resulted in a proportional decrease in the sensitivity of the copolymers. Crosslinking and chain scission were identified as the main effects of photolysis of NBR rubbers. (C) 1999 Society of Chemical Industry.
Resumo:
The thermal and gamma-irradiation induced curing of two phenylethynyl terminated composite resin systems, DFB/BPF and PETI5A, was investigated. Thermal curing of these matrix resin samples was performed at a temperature of 360 degrees C, gamma irradiation of the samples was conducted at 300 degrees C at a dose rate of 2.2 kGy h(-1). The reaction and subsequent loss of ethynyl groups in the resins for both cure methods was demonstrated by observing the decrease of the 2215 cm(-1) peak in the Raman spectra of the resins. Fully cured resin samples were found to have glass transition temperatures of 244-246 degrees C and 278-280 degrees C for DFB/BPF and PETI5A respectively. Similar relationships between T-g and fractional conversion were observed in both resins. The apparent polymerization rate, R-p, for thermal cure at 360 degrees C, was found to be 4.79 x 10(-2)% s(-1) in PETI5A and 3.22 x 10(-2)% s(-1) in DFB/BPF. Catastrophic degradation under nitrogen was observed to commence near 450 degrees C and 530 degrees C, with 5% weight losses occurring at 455 degrees C and 540 degrees C for DFB/BPF and PETI5A respectively. Gamma radiation induced cure at 300 degrees C was shown to be feasible, with full cure being reached with doses of 40 kGy for DFB/BPF and 100 kGy for PETI5A.
Resumo:
The radiation chemistry of poly(dimethyl siloxane) has been investigated with respect to identification of the nature of the small molecule chain scission products. Low molecular weight linear and cyclic products have been identified through the use of Si-29 solution NMR, GPC and MALDI-TOF mass spectrometry. It has been suggested that the low molecular weight cyclic products are formed by back-biting depolymerization reactions.
Resumo:
H-1- and C-13-NMR spectroscopy and FT-Raman spectroscopy are used to investigate the properties of a polymer gel dosimeter post-irradiation. The polymer gel (PACT) is composed of acrylamide, N,N'-methylene-bisacrylamide, gelatin, and water. The formation of a polyacrylamide network within the gelatin matrix follows a dose dependence nonlinearly correlated to the disappearance of the double bonds from the dissolved monomers within the absorbed dose range of 0-50 Gy. The signal from the gelatin remains constant with irradiation. We show that the NMR spin-spin relaxation times (T-2) of PAGs irradiated to up to 50 Gy measured in a NMR spectrometer and a clinical magnetic resonance imaging scanner can be modeled using the spectroscopic intensity of the growing polymer network. More specifically, we show that the nonlinear T-2 dependence against dose can be understood in terms of the fraction of protons in three different proton pools. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Yeast cells were used as a model system to study the inter-relationship among free radicals, antioxidants and UV-induced cell damage. In particular, the effects of UV-radiation in newly isolated yeasts from the Antarctic have been studied.
Resumo:
The Australian fossil record shows that from ca. 25 Myr ago, the aseasonal-wet biome (rainforest and wet heath) gave way to the unique Australian sclerophyll biomes dominated by eucalypts, acacias and casuarinas. This transition coincided with tectonic isolation of Australia, leading to cooler, drier, more seasonal climates. From 3 Myr ago, aridification caused rapid opening of the central Australian and zone. Molecular phylogenies with dated nodes have provided new perspectives on how these events could have affected the evolution of the Australian flora. During the Mid-Cenozoic (25-10 Myr ago) period of climatic change, there were rapid radiations in sclerophyll taxa, such as Banksia, eucalypts, pea-flowered legumes and Allocasuarina. At the same time, taxa restricted to the aseasonal-wet biome (Nothofagus, Podocarpaceae and Araucariaceae) did not radiate or were depleted by extinction. During the Pliocene aridification, two Eremean biome taxa (Lepidium and Chenopodiaceae) radiated rapidly after dispersing into Australia from overseas. It is clear that the biomes have different histories. Lineages in the aseasonal-wet biome are species poor, with sister taxa that are species rich, either outside Australia or in the sclerophyll biomes. In conjunction with the fossil record, this indicates depletion of the Australian aseasonal-wet biome from the Mid-Cenozoic. In the sclerophyll biomes, there have been multiple exchanges between the southwest and southeast, rather than single large endemic radiations after a vicariance event. There is need for rigorous molecular phylogenetic studies so that additional questions can be addressed, such as how interactions between biomes may have driven the speciation process during radiations. New studies should include the hither-to neglected monsoonal tropics.
Resumo:
Phylogenetic trees can provide a stable basis for a higher-level classification of organisms that reflects evolutionary relationships. However, some lineages have a complex evolutionary history that involves explosive radiation or hybridisation. Such histories have become increasingly apparent with the use of DNA sequence data for phylogeny estimation and explain, in part, past difficulties in producing stable morphology-based classifications for some groups. We illustrate this situation by using the example of tribe Mirbelieae (Fabaceae), whose generic classification has been fraught for decades. In particular, we discuss a recent proposal to combine 19 of the 25 Mirbelieae genera into a single genus, Pultenaea sens. lat., and how we might find stable and consistent ways to squeeze something as complex as life into little boxes for our own convenience. © CSIRO.