952 resultados para Invariant polynomials
Resumo:
A new operationalmatrix of fractional integration of arbitrary order for generalized Laguerre polynomials is derived.The fractional integration is described in the Riemann-Liouville sense.This operational matrix is applied together with generalized Laguerre tau method for solving general linearmultitermfractional differential equations (FDEs).Themethod has the advantage of obtaining the solution in terms of the generalized Laguerre parameter. In addition, only a small dimension of generalized Laguerre operational matrix is needed to obtain a satisfactory result. Illustrative examples reveal that the proposedmethod is very effective and convenient for linear multiterm FDEs on a semi-infinite interval.
Resumo:
To study a flavour model with a non-minimal Higgs sector one must first define the symmetries of the fields; then identify what types of vacua exist and how they may break the symmetries; and finally determine whether the remnant symmetries are compatible with the experimental data. Here we address all these issues in the context of flavour models with any number of Higgs doublets. We stress the importance of analysing the Higgs vacuum expectation values that are pseudo-invariant under the generators of all subgroups. It is shown that the only way of obtaining a physical CKM mixing matrix and, simultaneously, non-degenerate and non-zero quark masses is requiring the vacuum expectation values of the Higgs fields to break completely the full flavour group, except possibly for some symmetry belonging to baryon number. The application of this technique to some illustrative examples, such as the flavour groups Delta (27), A(4) and S-3, is also presented.
Resumo:
This paper is part of the Project “Adaptive thinking and flexible computation: Critical issues”. It discusses what is meant by adaptive thinking and presents the results of individual interviews with four pupils. The main goal of the study is to understand pupils’ reasoning when solving numerical tasks involving additive situations, and identify features associated with adaptive thinking. The results show that, in the case of first grade pupils, the semantic aspects of the problem are involved in its resolution and the pupils’ performance appears to be related to the development of number sense. The 2nd grade pupils seem to see the quantitative difference as an invariant numerical relationship.
Resumo:
An abstract theory on general synchronization of a system of several oscillators coupled by a medium is given. By generalized synchronization we mean the existence of an invariant manifold that allows a reduction in dimension. The case of a concrete system modeling the dynamics of a chemical solution on two containers connected to a third container is studied from the basics to arbitrary perturbations. Conditions under which synchronization occurs are given. Our theoretical results are complemented with a numerical study.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores - Ramo de Sistemas Autónomos
Resumo:
The main result of this work is a new criterion for the formation of good clusters in a graph. This criterion uses a new dynamical invariant, the performance of a clustering, that characterizes the quality of the formation of clusters. We prove that the growth of the dynamical invariant, the network topological entropy, has the effect of worsening the quality of a clustering, in a process of cluster formation by the successive removal of edges. Several examples of clustering on the same network are presented to compare the behavior of other parameters such as network topological entropy, conductance, coefficient of clustering and performance of a clustering with the number of edges in a process of clustering by successive removal.
Resumo:
We prove a one-to-one correspondence between (i) C1+ conjugacy classes of C1+H Cantor exchange systems that are C1+H fixed points of renormalization and (ii) C1+ conjugacy classes of C1+H diffeomorphisms f with a codimension 1 hyperbolic attractor Lambda that admit an invariant measure absolutely continuous with respect to the Hausdorff measure on Lambda. However, we prove that there is no C1+alpha Cantor exchange system, with bounded geometry, that is a C1+alpha fixed point of renormalization with regularity alpha greater than the Hausdorff dimension of its invariant Cantor set.
Resumo:
We exhibit the construction of stable arc exchange systems from the stable laminations of hyperbolic diffeomorphisms. We prove a one-to-one correspondence between (i) Lipshitz conjugacy classes of C(1+H) stable arc exchange systems that are C(1+H) fixed points of renormalization and (ii) Lipshitz conjugacy classes of C(1+H) diffeomorphisms f with hyperbolic basic sets Lambda that admit an invariant measure absolutely continuous with respect to the Hausdorff measure on Lambda. Let HD(s)(Lambda) and HD(u)(Lambda) be, respectively, the Hausdorff dimension of the stable and unstable leaves intersected with the hyperbolic basic set L. If HD(u)(Lambda) = 1, then the Lipschitz conjugacy is, in fact, a C(1+H) conjugacy in (i) and (ii). We prove that if the stable arc exchange system is a C(1+HDs+alpha) fixed point of renormalization with bounded geometry, then the stable arc exchange system is smooth conjugate to an affine stable arc exchange system.
Resumo:
In this paper we present the operational matrices of the left Caputo fractional derivative, right Caputo fractional derivative and Riemann–Liouville fractional integral for shifted Legendre polynomials. We develop an accurate numerical algorithm to solve the two-sided space–time fractional advection–dispersion equation (FADE) based on a spectral shifted Legendre tau (SLT) method in combination with the derived shifted Legendre operational matrices. The fractional derivatives are described in the Caputo sense. We propose a spectral SLT method, both in temporal and spatial discretizations for the two-sided space–time FADE. This technique reduces the two-sided space–time FADE to a system of algebraic equations that simplifies the problem. Numerical results carried out to confirm the spectral accuracy and efficiency of the proposed algorithm. By selecting relatively few Legendre polynomial degrees, we are able to get very accurate approximations, demonstrating the utility of the new approach over other numerical methods.
Resumo:
Recently, operational matrices were adapted for solving several kinds of fractional differential equations (FDEs). The use of numerical techniques in conjunction with operational matrices of some orthogonal polynomials, for the solution of FDEs on finite and infinite intervals, produced highly accurate solutions for such equations. This article discusses spectral techniques based on operational matrices of fractional derivatives and integrals for solving several kinds of linear and nonlinear FDEs. More precisely, we present the operational matrices of fractional derivatives and integrals, for several polynomials on bounded domains, such as the Legendre, Chebyshev, Jacobi and Bernstein polynomials, and we use them with different spectral techniques for solving the aforementioned equations on bounded domains. The operational matrices of fractional derivatives and integrals are also presented for orthogonal Laguerre and modified generalized Laguerre polynomials, and their use with numerical techniques for solving FDEs on a semi-infinite interval is discussed. Several examples are presented to illustrate the numerical and theoretical properties of various spectral techniques for solving FDEs on finite and semi-infinite intervals.
Resumo:
The shifted Legendre orthogonal polynomials are used for the numerical solution of a new formulation for the multi-dimensional fractional optimal control problem (M-DFOCP) with a quadratic performance index. The fractional derivatives are described in the Caputo sense. The Lagrange multiplier method for the constrained extremum and the operational matrix of fractional integrals are used together with the help of the properties of the shifted Legendre orthonormal polynomials. The method reduces the M-DFOCP to a simpler problem that consists of solving a system of algebraic equations. For confirming the efficiency and accuracy of the proposed scheme, some test problems are implemented with their approximate solutions.
Resumo:
A Thesis submitted for the co-tutelle degree of Doctor in Physics at Universidade Nova de Lisboa and Université Pierre et Marie Curie
Resumo:
There is a one-to-one correspondence between C1+H Cantor exchange systems that are C1+H fixed points of renormalization and C1+H diffeomorphisms f on surfaces with a codimension 1 hyperbolic attractor Λ that admit an invariant measure absolutely continuous with respect to the Hausdorff measure on Λ. However, there is no such C1+α Cantor exchange system with bounded geometry that is a C1+α fixed point of renormalization with regularity α greater than the Hausdorff dimension of its invariant Cantor set. The proof of the last result uses that the stable holonomies of a codimension 1 hyperbolic attractor Λ are not C1+θ for θ greater than the Hausdorff dimension of the stable leaves of f intersected with Λ.
Resumo:
Culex quinquefasciatus is a vector of human pathogens, including filarial nematodes and several viruses. Although its epidemiological relevance is known to vary across geographical regions, an understanding of its population genetic structure is still incipient. In light of this, we evaluated the genetic diversity of Cx. quinquefasciatus and Cx. pipiens x Cx. quinquefasciatus hybrids collected from nine localities in Brazil and one site in Argentina. We used mitochondrial genes cox1 and nd4, along with the coxA and wsp genes of the maternally-inherited Wolbachia endosymbiont. The nd4 fragment was invariant between samples, whilst cox1 exhibited four haplotypes that separated two types of Cx. quinquefasciatus, one clustered in southern Brazil. Low sequence diversity was generally observed, being discussed. Both Brazilian and Argentinian mosquitoes were infected with a single Wolbachia strain. As reported in previous studies with these populations, cox1 and nd4 diversity is not congruent with the population structure revealed by nuclear markers or alar morphology. Future Cx. quinquefasciatus research should, if possible, evaluate mtDNA diversity in light of other markers.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics