904 resultados para Interstellar medium
Resumo:
Two triazole derivatives, 3,4-dichloro-acetophenone-O-1'-(1',3',4'-triazolyl)-methaneoxime (4-DTM) and 2,5-dichloro-acetophenone-O-1'-(1',3',4'-triazolyl)-methaneoxime (5-DTM) were synthesized, and the inhibition effects for mild steel in 1 M HCl solutions were investigated by weight loss measurements, electrochemical tests and scanning electronic microscopy (SEM). The weight loss measurements showed that these compounds have excellent inhibiting effect at a concentration of 1.0 x 10(-3) M. The potentiodynamic polarization experiment revealed that the triazole derivatives are inhibitors of mixed-type and electrochemical impedance spectroscopy (EIS) confirmed that changes in the impedance parameters (R-ct and C-dl) are due to surface adsorption. The inhibition efficiencies obtained from weight loss measurements and electrochemical tests were in good agreement. Adsorption followed the Langmuir isotherm with negative values of the free energy of adsorption Delta G(ads)(o). The thermodynamic parameters of adsorption were determined and are discussed. Results show that both 4-DTM and 5-DTM are good inhibitors for mild steel in acid media.
Resumo:
Repeated-batch cultures of strawberry cells (Fragaria ananassa cv. Shikinari) subjected to four medium-shift procedures (constant LS medium, constant B5 medium, alternation between LS and B5 starting from LS and alternation between LS and B5 starting from B5) were investigated for the enhanced anthocyanin productivity. To determine the optimum period for repeated batch cultures, two medium-shift periods of 9 and 14 days were studied, which represent the end of the exponential growth phase and the stationary phase. By comparison with the corresponding batch cultures, higher anthocyanin productivity was achieved for all the repeated-batch cultures at a 9-day medium-shift period. The average anthocyanin productivity was enhanced 1.7-and 1.76-fold by repeated-batch cultures in constant LS and constant B5 medium at a 9-day shift period for 45 days, respectively. No further improvement was observed when the medium was alternated between LS (the growth medium) and B5 (the production medium). Anthocyanin production was unstable at a 14-day shift period regardless of the medium-shift procedures. The results show that it is feasible to improve anthocyanin production by a repeated-batch culture of strawberry cells.
Resumo:
An oxygen permeable mixed ion and electron conducting membrane (OPMIECM) was used as an oxygen transfer medium as well as a catalyst for the oxidative dehydrogenation of ethane to produce ethylene. O2- species transported through the membrane reacted with ethane to produce ethylene before it recombined to gaseous O-2, so that the deep oxidation of the products was greatly suppressed. As a result, 80% selectivity of ethylene at 84% ethane conversion was achieved, whereas 53.7% ethylene selectivity was obtained using a conventional fixed-bed reactor under the same reaction conditions with the same catalyst at 800 degreesC. A 100 h continuous operation of this process was carried out and the result indicates the feasibility for practical applications.
Resumo:
Marine sponge cell culture is a potential route for the sustainable production of sponge-derived bioproducts. Development of a basal culture medium is a prerequisite for the attachment, spreading, and growth of sponge cells in vitro. With the limited knowledge available on nutrient requirements for sponge cells, a series of statistical experimental designs has been employed to screen and optimize the critical nutrient components including inorganic salts (ferric ion, zinc ion, silicate, and NaCl), amino acids (glycine, glutamine, and aspartic acid), sugars (glucose, sorbitol, and sodium pyruvate), vitamin C, and mammalian cell medium (DMEM and RPMI 1640) using MTT assay in 96-well plates. The marine sponge Hymeniacidon perleve was used as a model system. Plackett-Burman design was used for the initial screening, which identified the significant factors of ferric ion, NaCl, and vitamin C. These three factors were selected for further optimization by Uniform Design and Response Surface Methodology (RSM), respectively. A basal medium was finally established, which supported an over 100% increase in viability of sponge cells.
Resumo:
It has been suggested that the less than optimal levels of students’ immersion language “persist in part because immersion teachers lack systematic approaches for integrating language into their content instruction” (Tedick, Christian and Fortune, 2011, p.7). I argue that our current lack of knowledge regarding what immersion teachers think, know and believe and what immersion teachers’ actual ‘lived’ experiences are in relation to form-focused instruction (FFI) prevents us from fully understanding the key issues at the core of experiential immersion pedagogy and form-focused integration. FFI refers to “any planned or incidental instructional activity that is intended to induce language learners to pay attention to linguistic form” (Ellis, 2001b, p.1). The central aim of this research study is to critically examine the perspectives and practices of Irish-medium immersion (IMI) teachers in relation to FFI. The study ‘taps’ into the lived experiences of three IMI teachers in three different IMI school contexts and explores FFI from a classroom-based, teacher-informed perspective. Philosophical underpinnings of the interpretive paradigm and critical hermeneutical principles inform and guide the study. A multi-case study approach was adopted and data was gathered through classroom observation, video-stimulated recall and semistructured interviews. Findings revealed that the journey of ‘becoming’ an IMI teacher is shaped by a vast array of intricate variables. IMI teacher identity, implicit theories, stated beliefs, educational biographies and experiences, IMI school cultures and contexts as well as teacher knowledge and competence impacted on IMI teachers’ FFI perspectives and practices. An IMI content teacher identity reflected the teachers’ priorities as shaped by pedagogical challenges and their educational backgrounds. While research participants had clearly defined instructional beliefs and goals, their roadmap of how to actually accomplish these goals was far from clear. IMI teachers described the multitude of choices and pedagogical dilemmas they faced in integrating FFI into experiential pedagogy. Significant gaps in IMI teachers’ declarative knowledge about and competence in the immersion language were also reported. This research study increases our understanding of the complexity of the processes underlying and shaping FFI pedagogy in IMI education. Innovative FFI opportunities for professional development across the continuum of teacher education are outlined, a comprehensive evaluation of IMI is called for and areas for further research are delineated.
Resumo:
Virtual learning environments (VLEs) are often perceived by education establishments as an opportunity to widen access without traditional overheads. An integral part of most VLEs is asynchronous computer conferencing and on-line moderators must help students migrate quickly to the new virtual environment to minimize learning disruption. This paper focuses on 21 new on-line moderators and reports their changing perceptions re their role and concerns, from their first appointment through to the end of the delivery of their first on-line course. The findings suggest that it is only after socialization occurs that information can be exchanged and lead to knowledge construction. These are supported by, and extend, prior research by Z Berge, R Mason, M Paulsen and G Salmon and are reinforced by empirical work with a further 19 new on-line moderators.
Resumo:
The extent and gravity of the environmental degradation of the water resources in Dhaka due to untreated industrial waste is not fully recognised in international discourse. Pollution levels affect vast numbers, but the poor and the vulnerable are the worst affected. For example, rice productivity, the mainstay of poor farmers, in the Dhaka watershed has declined by 40% over a period of ten years. The study found significant correlations between water pollution and diseases such as jaundice, diarrhoea and skin problems. It was reported that the cost of treatment of one episode of skin disease could be as high as 29% of the weekly earnings of some of the poorest households. The dominant approach to deal with pollution in the SMEs is technocratic. Given the magnitude of the problem this paper argues that to control industrial pollution by SMEs and to enhance their compliance it is necessary to move from the technocratic approach to one which can also address the wider institutional and attitudinal issues. Underlying this shift is the need to adopt the appropriate methodology. The multi-stakeholder analysis enables an understanding of the actors, their influence, their capacity to participate in, or oppose change, and the existing and embedded incentive structures which allow them to pursue interests which are generally detrimental to environmental good. This enabled core and supporting strategies to be developed around three types of actors in industrial pollution, i.e., (i) principal actors, who directly contribute to industrial pollution; (ii) stakeholders who exacerbate the situation; and (iii) potential actors in mitigation. Within a carrot-and-stick framework, the strategies aim to improve environmental governance and transparency, set up a packet to incentive for industry and increase public awareness.
Resumo:
AIM: To investigate the effect of repeated culture in a rich medium on certain genetic, metabolic, pathogenic and structural characteristics of fresh isolates of Bacillus thuringiensis. METHODS AND RESULTS: Four strains of B. thuringiensis, which had been isolated in vegetative form from leaf surfaces, were grown for 500 generations in batch culture in a rich medium. One of the strains, S4g, differed from the parent in the following respects: greater cell width; changed plasmid profile; complete loss of ability to produce delta-endotoxins; loss of ability to produce beta-exotoxin and disruption of vip3 gene; radically different fatty acid composition; and altered metabolic activity. Two of the other evolved strains (S1g and S6g) showed differences in fatty acid profiles compared with the parents. Genetic finger-printing showed that there were also mutations in the cry genes of two of the evolved strains (S1g and S2g). The delta-endotoxins of strain S6g were significantly less toxic to the larvae of Pieris brassica compared with those of the parent and it also differed in the plasmid content. CONCLUSION: Radical and unpredictable changes can occur in fresh isolates of B. thuringiensis when subjected to growth in the laboratory. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first analysis of a Gram positive and biotechnologically significant bacterium after repeated laboratory culture. It is of great relevance to the biotechnological exploitation of B. thuringiensis that prolonged growth of environmental isolates on laboratory culture media can have profound effects on their structure, genome and virulence determinants.
Resumo:
In this Letter, we present the first results from updated models of interstellar deuterium chemistry that now include all possible deuterated isotopomers of H3+. We find that in regions of high density and heavy depletion, such as prestellar cores, the inclusion of HD2+ and D3+ enhances the fractionation of ionic and neutral species significantly. Our models are the first to predict the very high atomic D/H ratios (>=0.3) necessary for grain-surface chemistry models to reproduce the high formaldehyde and methanol fractionation seen in star-forming regions.