968 resultados para Interporti, Trasporto combinato, Terminal intermodale, Freight Villages
Resumo:
Glycoprotein Ia* (GPIa*), a very high molecular mass, platelet alpha-granule protein consisting of 167 kDa subunits disulphide-linked in a multimeric structure, was first described by Bienz and Clemetson in 1989 (J. Biol. Chem. 264, 507-514). In 1991 Hayward et al. (J. Biol. Chem. 266, 7114-7120) independently identified a platelet protein with multimeric structure. Despite strong similarities to GPIa* they concluded that it was a novel multimeric protein and named it first p-155 and later, multimerin. Multimerin has also been found in endothelial cells and has been cloned recently from an endothelial cell cDNA library. This has made it possible for us to clarify the relationship between GPIa* and multimerin. GPIa* was isolated from platelet releasate and the N-terminal sequence of 167 kDa and 155 kDa subunit species were determined. The N-terminal 15 amino acids of GPIa* were identical to the deduced amino acids 184-198 of endothelial multimerin. The N-terminal sequence of the 155 kDa protein was identical to the deduced amino acids 318-326 of multimerin. Thus, platelet GPIa* (167 kDa) is the main processed form of multimerin stored in platelet alpha-granules. The GPIa*/processed multimerin (167 kDa) still contains an RGDS sequence near its N-terminus as well as an EGF domain which may be involved in binding to the platelet surface after release. This sequence and domain are cleaved off in the p-155 form, described earlier as platelet multimerin, which is probably formed after release from alpha-granules.
Resumo:
Glycoprotein Ib (GPIb) is a platelet receptor with a critical role in mediating the arrest of platelets at sites of vascular damage. GPIb binds to the A1 domain of von Willebrand factor (vWF-A1) at high blood shear, initiating platelet adhesion and contributing to the formation of a thrombus. To investigate the molecular basis of GPIb regulation and ligand binding, we have determined the structure of the N-terminal domain of the GPIb(alpha) chain (residues 1-279). This structure is the first determined from the cell adhesion/signaling class of leucine-rich repeat (LRR) proteins and reveals the topology of the characteristic disulfide-bonded flanking regions. The fold consists of an N-terminal beta-hairpin, eight leucine-rich repeats, a disulfide-bonded loop, and a C-terminal anionic region. The structure also demonstrates a novel LRR motif in the form of an M-shaped arrangement of three tandem beta-turns. Negatively charged binding surfaces on the LRR concave face and anionic region indicate two-step binding kinetics to vWF-A1, which can be regulated by an unmasking mechanism involving conformational change of a key loop. Using molecular docking of the GPIb and vWF-A1 crystal structures, we were also able to model the GPIb.vWF-A1 complex.
Resumo:
Endotoxin triggers the subarachnoid inflammation of gram-negative meningitis. This study examined the ability of a recombinant N-terminal fragment of bactericidal/permeability-increasing protein (rBPI23) to block endotoxin-induced meningitis in rabbits. Intracisternal (ic) injection of 10-20 ng of meningococcal endotoxin induced high cerebrospinal fluid (CSF) concentrations of tumor necrosis factor (TNF) and CSF pleocytosis and increased CSF lactate concentrations. ic administration of rBPI23 significantly reduced meningococcal endotoxin-induced TNF release into CSF (P < .005), lactate concentrations (P < .001), and CSF white blood cell counts (P < .01). No such effect was observed in animals receiving intravenous rBPI23. Concentrations of rBPI23 in CSF were high after ic administration but low or undetectable after systemic administration. Thus, high concentrations of rBPI23 can effectively neutralize meningococcal endotoxin in CSF, but low CSF concentrations after systemic administration currently limit its potential usefulness as adjunctive drug treatment in gram-negative meningitis.
Resumo:
Human maltase-glucoamylase (MGAM) is one of the two enzymes responsible for catalyzing the last glucose-releasing step in starch digestion. MGAM is anchored to the small-intestinal brush-border epithelial cells and contains two homologous glycosyl hydrolase family 31 catalytic subunits: an N-terminal subunit (NtMGAM) found near the membrane-bound end and a C-terminal luminal subunit (CtMGAM). In this study, we report the crystal structure of the human NtMGAM subunit in its apo form (to 2.0 A) and in complex with acarbose (to 1.9 A). Structural analysis of the NtMGAM-acarbose complex reveals that acarbose is bound to the NtMGAM active site primarily through side-chain interactions with its acarvosine unit, and almost no interactions are made with its glycone rings. These observations, along with results from kinetic studies, suggest that the NtMGAM active site contains two primary sugar subsites and that NtMGAM and CtMGAM differ in their substrate specificities despite their structural relationship. Additional sequence analysis of the CtMGAM subunit suggests several features that could explain the higher affinity of the CtMGAM subunit for longer maltose oligosaccharides. The results provide a structural basis for the complementary roles of these glycosyl hydrolase family 31 subunits in the bioprocessing of complex starch structures into glucose.
Resumo:
Recent changes in the cost and availability of natural gas (NG) as compared to diesel have sparked interest at all levels of the commercial shipping sector. In particular, Class 1 heavy-duty rail has been researching NG as a supplement to diesel combustion. This study investigates the relative economic and emissions advantage of making use of the energy efficiencies if combustion is circumvented altogether by use of fuel cell (FC) technologies applied to NG. FC technology for the transport sector has primarily been developed for the private automobile. However, FC use in the automobile sector faces considerable economic and logistical barriers such as cost, range, durability, and refueling infrastructure. The heavy-duty freight sector may be a more reasonable setting to introduce FC technology to the transportation market. The industry has shown interest in adopting NG as a potential fuel by already investing in NG infrastructure and locomotives. The two most promising FC technologies are proton exchange membrane fuel cells (PEMFCs) and solid oxide fuel cells (SOFCs). SOFCs are more efficient and capable of accepting any kind of fuel, which makes them particularly attractive. The rail industry can benefit from the adoption of FC technology through reduced costs and emissions, as well as limiting dependence on diesel, which accounts for a large portion of operation expenses for Class 1 railroads. This report provides an economic feasibility analysis comparing the use of PEMFCs and SOFCs in heavy freight rail transport applications. The scope is to provide insight into which technologies could be pursued by the industry and to prioritize technologies that need further development. Initial results do not show economic potential for NG and fuel cells in locomotion, but some minimal potential for reduced emissions is seen. Various technology configurations and market scenarios analyzed could provide savings if the price of LNG is decreased and the price of diesel increases. The most beneficial areas of needed research include technology development for the variable output of SOFCs, and hot start-up optimization.
Resumo:
http://digitalcommons.mtu.edu/copper_range/1000/thumbnail.jpg
Resumo:
The purpose of this study was to assess bone mineral density (BMD) and parameters for bone metabolism in patients with end-stage heart disease awaiting heart transplantation to determine whether these patients are at increased risk of bone disease.
Resumo:
Gegenstand des vorliegenden Beitrages ist eine Methode zur Kosten- und Leistungsbewertung von Containerschiffen als Transportmittel des Hauptlaufes in intermodalen Transportketten für ISO-Container. Anlass bildet die permanente Größenentwicklung der Containerschiffe und die daraufhin ausgerichtete Infrastruktur- und Transportkettenentwicklung im Vor- und Nachlauf, die nicht risikofrei zu beurteilen ist. Mit der vorgestellten Methode wird deutlich, dass die Erfolgs- bzw. Misserfolgsfaktoren der Großcontainerschiffe fast nur noch in den Häfen und deren Hinterlandanbindungen zu suchen sind.
Resumo:
The synthesis is reported of a new series of oligo(aryleneethynylene) (OAE) derivatives of up to ca. 6 nm in molecular length (OAE9) using iterative Pd-mediated Sonogashira cross-coupling methodology. The oligo-p-phenyleneethynylene cores of the molecular wires are functionalized at both termini with pyridyl units for attachment to gold leads. The molecular structures determined by single-crystal X-ray analysis are reported for OAE4, OAE5, OAE7, and OAE8a. The charge transport characteristics of derivatives OAE3–OAE9 in single-molecular junctions have been studied using the mechanically controlled break junction technique. The data demonstrate that the junction conductance decreases with increasing molecular length. A transition from coherent transport via tunneling to a hopping mechanism is found for OAE wires longer than ca. 3 nm.
Resumo:
OBJECTIVES Individual mutations in the SCN5A-encoding cardiac sodium channel alpha-subunit cause single cardiac arrhythmia disorders, but a few cause multiple distinct disorders. Here we report a family harboring an SCN5A mutation (L1821fs/10) causing a truncation of the C-terminus with a marked and complex biophysical phenotype and a corresponding variable and complex clinical phenotype with variable penetrance. METHODS AND RESULTS A 12-year-old male with congenital sick sinus syndrome (SSS), cardiac conduction disorder (CCD), and recurrent monomorphic ventricular tachycardia (VT) had mutational analysis that identified a 4 base pair deletion (TCTG) at position 5464-5467 in exon 28 of SCN5A. The mutation was also present in six asymptomatic family members only two of which showed mild ECG phenotypes. The deletion caused a frame-shift mutation (L1821fs/10) with truncation of the C-terminus after 10 missense amino acid substitutions. When expressed in HEK-293 cells for patch-clamp study, the current density of L1821fs/10 was reduced by 90% compared with WT. In addition, gating kinetic analysis showed a 5-mV positive shift in activation, a 12-mV negative shift of inactivation and enhanced intermediate inactivation, all of which would tend to reduce peak and early sodium current. Late sodium current, however, was increased in the mutated channels. CONCLUSIONS The L1821fs/10 mutation causes the most severe disruption of SCN5A structure for a naturally occurring mutation that still produces current. It has a marked loss-of-function and unique phenotype of SSS, CCD and VT with incomplete penetrance.
Les villages préhistoriques des bords des lacs circum-alpins entre le Ve et IVe millénaire av. J.-C.
Resumo:
Connus sous le nom populaire de palafittes, les habitats préhistoriques construits sur les rives des lacs subalpins du Néolithique à l’aube de l’âge du Fer (entre 5300 et 700 av. J.-C.) offrent des informations exceptionnelles sur l’évolution culturelle d’une importante région européenne, grâce à la préservation remarquable des matériaux organiques, en particulier du bois. À partir de la deuxième moitié du XXe siècle, le perfectionnement des techniques de fouille subaquatiques et de la dendrochronologie permettront la construction d’un schéma chronologique précis pour l’Europe nord-alpine. Les recherches contribueront à des observations d’ordre écologique à l’échelle locale et régionale et à l’identification des rythmes de développement des villages. Sous l’égide de l'UNESCO, les années 2010 verront la constitution d’un inventaire vaste et uniforme des sites préhistoriques des lacs circumalpins, classés Patrimoine culturel mondial en juin 2011.