966 resultados para Internal algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensive use of the Internet coupled with the marvelous growth in e-commerce and m-commerce has created a huge demand for information security. The Secure Socket Layer (SSL) protocol is the most widely used security protocol in the Internet which meets this demand. It provides protection against eaves droppings, tampering and forgery. The cryptographic algorithms RC4 and HMAC have been in use for achieving security services like confidentiality and authentication in the SSL. But recent attacks against RC4 and HMAC have raised questions in the confidence on these algorithms. Hence two novel cryptographic algorithms MAJE4 and MACJER-320 have been proposed as substitutes for them. The focus of this work is to demonstrate the performance of these new algorithms and suggest them as dependable alternatives to satisfy the need of security services in SSL. The performance evaluation has been done by using practical implementation method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Internet today has become a vital part of day to day life, owing to the revolutionary changes it has brought about in various fields. Dependence on the Internet as an information highway and knowledge bank is exponentially increasing so that a going back is beyond imagination. Transfer of critical information is also being carried out through the Internet. This widespread use of the Internet coupled with the tremendous growth in e-commerce and m-commerce has created a vital need for infonnation security.Internet has also become an active field of crackers and intruders. The whole development in this area can become null and void if fool-proof security of the data is not ensured without a chance of being adulterated. It is, hence a challenge before the professional community to develop systems to ensure security of the data sent through the Internet.Stream ciphers, hash functions and message authentication codes play vital roles in providing security services like confidentiality, integrity and authentication of the data sent through the Internet. There are several ·such popular and dependable techniques, which have been in use widely, for quite a long time. This long term exposure makes them vulnerable to successful or near successful attempts for attacks. Hence it is the need of the hour to develop new algorithms with better security.Hence studies were conducted on various types of algorithms being used in this area. Focus was given to identify the properties imparting security at this stage. By making use of a perception derived from these studies, new algorithms were designed. Performances of these algorithms were then studied followed by necessary modifications to yield an improved system consisting of a new stream cipher algorithm MAJE4, a new hash code JERIM- 320 and a new message authentication code MACJER-320. Detailed analysis and comparison with the existing popular schemes were also carried out to establish the security levels.The Secure Socket Layer (SSL) I Transport Layer Security (TLS) protocol is one of the most widely used security protocols in Internet. The cryptographic algorithms RC4 and HMAC have been in use for achieving security services like confidentiality and authentication in the SSL I TLS. But recent attacks on RC4 and HMAC have raised questions about the reliability of these algorithms. Hence MAJE4 and MACJER-320 have been proposed as substitutes for them. Detailed studies on the performance of these new algorithms were carried out; it has been observed that they are dependable alternatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To ensure quality of machined products at minimum machining costs and maximum machining effectiveness, it is very important to select optimum parameters when metal cutting machine tools are employed. Traditionally, the experience of the operator plays a major role in the selection of optimum metal cutting conditions. However, attaining optimum values each time by even a skilled operator is difficult. The non-linear nature of the machining process has compelled engineers to search for more effective methods to attain optimization. The design objective preceding most engineering design activities is simply to minimize the cost of production or to maximize the production efficiency. The main aim of research work reported here is to build robust optimization algorithms by exploiting ideas that nature has to offer from its backyard and using it to solve real world optimization problems in manufacturing processes.In this thesis, after conducting an exhaustive literature review, several optimization techniques used in various manufacturing processes have been identified. The selection of optimal cutting parameters, like depth of cut, feed and speed is a very important issue for every machining process. Experiments have been designed using Taguchi technique and dry turning of SS420 has been performed on Kirlosker turn master 35 lathe. Analysis using S/N and ANOVA were performed to find the optimum level and percentage of contribution of each parameter. By using S/N analysis the optimum machining parameters from the experimentation is obtained.Optimization algorithms begin with one or more design solutions supplied by the user and then iteratively check new design solutions, relative search spaces in order to achieve the true optimum solution. A mathematical model has been developed using response surface analysis for surface roughness and the model was validated using published results from literature.Methodologies in optimization such as Simulated annealing (SA), Particle Swarm Optimization (PSO), Conventional Genetic Algorithm (CGA) and Improved Genetic Algorithm (IGA) are applied to optimize machining parameters while dry turning of SS420 material. All the above algorithms were tested for their efficiency, robustness and accuracy and observe how they often outperform conventional optimization method applied to difficult real world problems. The SA, PSO, CGA and IGA codes were developed using MATLAB. For each evolutionary algorithmic method, optimum cutting conditions are provided to achieve better surface finish.The computational results using SA clearly demonstrated that the proposed solution procedure is quite capable in solving such complicated problems effectively and efficiently. Particle Swarm Optimization (PSO) is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. From the results it has been observed that PSO provides better results and also more computationally efficient.Based on the results obtained using CGA and IGA for the optimization of machining process, the proposed IGA provides better results than the conventional GA. The improved genetic algorithm incorporating a stochastic crossover technique and an artificial initial population scheme is developed to provide a faster search mechanism. Finally, a comparison among these algorithms were made for the specific example of dry turning of SS 420 material and arriving at optimum machining parameters of feed, cutting speed, depth of cut and tool nose radius for minimum surface roughness as the criterion. To summarize, the research work fills in conspicuous gaps between research prototypes and industry requirements, by simulating evolutionary procedures seen in nature that optimize its own systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational Biology is the research are that contributes to the analysis of biological data through the development of algorithms which will address significant research problems.The data from molecular biology includes DNA,RNA ,Protein and Gene expression data.Gene Expression Data provides the expression level of genes under different conditions.Gene expression is the process of transcribing the DNA sequence of a gene into mRNA sequences which in turn are later translated into proteins.The number of copies of mRNA produced is called the expression level of a gene.Gene expression data is organized in the form of a matrix. Rows in the matrix represent genes and columns in the matrix represent experimental conditions.Experimental conditions can be different tissue types or time points.Entries in the gene expression matrix are real values.Through the analysis of gene expression data it is possible to determine the behavioral patterns of genes such as similarity of their behavior,nature of their interaction,their respective contribution to the same pathways and so on. Similar expression patterns are exhibited by the genes participating in the same biological process.These patterns have immense relevance and application in bioinformatics and clinical research.Theses patterns are used in the medical domain for aid in more accurate diagnosis,prognosis,treatment planning.drug discovery and protein network analysis.To identify various patterns from gene expression data,data mining techniques are essential.Clustering is an important data mining technique for the analysis of gene expression data.To overcome the problems associated with clustering,biclustering is introduced.Biclustering refers to simultaneous clustering of both rows and columns of a data matrix. Clustering is a global whereas biclustering is a local model.Discovering local expression patterns is essential for identfying many genetic pathways that are not apparent otherwise.It is therefore necessary to move beyond the clustering paradigm towards developing approaches which are capable of discovering local patterns in gene expression data.A biclusters is a submatrix of the gene expression data matrix.The rows and columns in the submatrix need not be contiguous as in the gene expression data matrix.Biclusters are not disjoint.Computation of biclusters is costly because one will have to consider all the combinations of columans and rows in order to find out all the biclusters.The search space for the biclustering problem is 2 m+n where m and n are the number of genes and conditions respectively.Usually m+n is more than 3000.The biclustering problem is NP-hard.Biclustering is a powerful analytical tool for the biologist.The research reported in this thesis addresses the problem of biclustering.Ten algorithms are developed for the identification of coherent biclusters from gene expression data.All these algorithms are making use of a measure called mean squared residue to search for biclusters.The objective here is to identify the biclusters of maximum size with the mean squared residue lower than a given threshold. All these algorithms begin the search from tightly coregulated submatrices called the seeds.These seeds are generated by K-Means clustering algorithm.The algorithms developed can be classified as constraint based,greedy and metaheuristic.Constarint based algorithms uses one or more of the various constaints namely the MSR threshold and the MSR difference threshold.The greedy approach makes a locally optimal choice at each stage with the objective of finding the global optimum.In metaheuristic approaches particle Swarm Optimization(PSO) and variants of Greedy Randomized Adaptive Search Procedure(GRASP) are used for the identification of biclusters.These algorithms are implemented on the Yeast and Lymphoma datasets.Biologically relevant and statistically significant biclusters are identified by all these algorithms which are validated by Gene Ontology database.All these algorithms are compared with some other biclustering algorithms.Algorithms developed in this work overcome some of the problems associated with the already existing algorithms.With the help of some of the algorithms which are developed in this work biclusters with very high row variance,which is higher than the row variance of any other algorithm using mean squared residue, are identified from both Yeast and Lymphoma data sets.Such biclusters which make significant change in the expression level are highly relevant biologically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensive use of the Internet coupled with the marvelous growth in e-commerce and m-commerce has created a huge demand for information security. The Secure Socket Layer (SSL) protocol is the most widely used security protocol in the Internet which meets this demand. It provides protection against eaves droppings, tampering and forgery. The cryptographic algorithms RC4 and HMAC have been in use for achieving security services like confidentiality and authentication in the SSL. But recent attacks against RC4 and HMAC have raised questions in the confidence on these algorithms. Hence two novel cryptographic algorithms MAJE4 and MACJER-320 have been proposed as substitutes for them. The focus of this work is to demonstrate the performance of these new algorithms and suggest them as dependable alternatives to satisfy the need of security services in SSL. The performance evaluation has been done by using practical implementation method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Overview of known spatial clustering algorithms The space of interest can be the two-dimensional abstraction of the surface of the earth or a man-made space like the layout of a VLSI design, a volume containing a model of the human brain, or another 3d-space representing the arrangement of chains of protein molecules. The data consists of geometric information and can be either discrete or continuous. The explicit location and extension of spatial objects define implicit relations of spatial neighborhood (such as topological, distance and direction relations) which are used by spatial data mining algorithms. Therefore, spatial data mining algorithms are required for spatial characterization and spatial trend analysis. Spatial data mining or knowledge discovery in spatial databases differs from regular data mining in analogous with the differences between non-spatial data and spatial data. The attributes of a spatial object stored in a database may be affected by the attributes of the spatial neighbors of that object. In addition, spatial location, and implicit information about the location of an object, may be exactly the information that can be extracted through spatial data mining

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study on variable stars is an important topic of modern astrophysics. After the invention of powerful telescopes and high resolving powered CCD’s, the variable star data is accumulating in the order of peta-bytes. The huge amount of data need lot of automated methods as well as human experts. This thesis is devoted to the data analysis on variable star’s astronomical time series data and hence belong to the inter-disciplinary topic, Astrostatistics. For an observer on earth, stars that have a change in apparent brightness over time are called variable stars. The variation in brightness may be regular (periodic), quasi periodic (semi-periodic) or irregular manner (aperiodic) and are caused by various reasons. In some cases, the variation is due to some internal thermo-nuclear processes, which are generally known as intrinsic vari- ables and in some other cases, it is due to some external processes, like eclipse or rotation, which are known as extrinsic variables. Intrinsic variables can be further grouped into pulsating variables, eruptive variables and flare stars. Extrinsic variables are grouped into eclipsing binary stars and chromospheri- cal stars. Pulsating variables can again classified into Cepheid, RR Lyrae, RV Tauri, Delta Scuti, Mira etc. The eruptive or cataclysmic variables are novae, supernovae, etc., which rarely occurs and are not periodic phenomena. Most of the other variations are periodic in nature. Variable stars can be observed through many ways such as photometry, spectrophotometry and spectroscopy. The sequence of photometric observa- xiv tions on variable stars produces time series data, which contains time, magni- tude and error. The plot between variable star’s apparent magnitude and time are known as light curve. If the time series data is folded on a period, the plot between apparent magnitude and phase is known as phased light curve. The unique shape of phased light curve is a characteristic of each type of variable star. One way to identify the type of variable star and to classify them is by visually looking at the phased light curve by an expert. For last several years, automated algorithms are used to classify a group of variable stars, with the help of computers. Research on variable stars can be divided into different stages like observa- tion, data reduction, data analysis, modeling and classification. The modeling on variable stars helps to determine the short-term and long-term behaviour and to construct theoretical models (for eg:- Wilson-Devinney model for eclips- ing binaries) and to derive stellar properties like mass, radius, luminosity, tem- perature, internal and external structure, chemical composition and evolution. The classification requires the determination of the basic parameters like pe- riod, amplitude and phase and also some other derived parameters. Out of these, period is the most important parameter since the wrong periods can lead to sparse light curves and misleading information. Time series analysis is a method of applying mathematical and statistical tests to data, to quantify the variation, understand the nature of time-varying phenomena, to gain physical understanding of the system and to predict future behavior of the system. Astronomical time series usually suffer from unevenly spaced time instants, varying error conditions and possibility of big gaps. This is due to daily varying daylight and the weather conditions for ground based observations and observations from space may suffer from the impact of cosmic ray particles. Many large scale astronomical surveys such as MACHO, OGLE, EROS, xv ROTSE, PLANET, Hipparcos, MISAO, NSVS, ASAS, Pan-STARRS, Ke- pler,ESA, Gaia, LSST, CRTS provide variable star’s time series data, even though their primary intention is not variable star observation. Center for Astrostatistics, Pennsylvania State University is established to help the astro- nomical community with the aid of statistical tools for harvesting and analysing archival data. Most of these surveys releases the data to the public for further analysis. There exist many period search algorithms through astronomical time se- ries analysis, which can be classified into parametric (assume some underlying distribution for data) and non-parametric (do not assume any statistical model like Gaussian etc.,) methods. Many of the parametric methods are based on variations of discrete Fourier transforms like Generalised Lomb-Scargle peri- odogram (GLSP) by Zechmeister(2009), Significant Spectrum (SigSpec) by Reegen(2007) etc. Non-parametric methods include Phase Dispersion Minimi- sation (PDM) by Stellingwerf(1978) and Cubic spline method by Akerlof(1994) etc. Even though most of the methods can be brought under automation, any of the method stated above could not fully recover the true periods. The wrong detection of period can be due to several reasons such as power leakage to other frequencies which is due to finite total interval, finite sampling interval and finite amount of data. Another problem is aliasing, which is due to the influence of regular sampling. Also spurious periods appear due to long gaps and power flow to harmonic frequencies is an inherent problem of Fourier methods. Hence obtaining the exact period of variable star from it’s time series data is still a difficult problem, in case of huge databases, when subjected to automation. As Matthew Templeton, AAVSO, states “Variable star data analysis is not always straightforward; large-scale, automated analysis design is non-trivial”. Derekas et al. 2007, Deb et.al. 2010 states “The processing of xvi huge amount of data in these databases is quite challenging, even when looking at seemingly small issues such as period determination and classification”. It will be beneficial for the variable star astronomical community, if basic parameters, such as period, amplitude and phase are obtained more accurately, when huge time series databases are subjected to automation. In the present thesis work, the theories of four popular period search methods are studied, the strength and weakness of these methods are evaluated by applying it on two survey databases and finally a modified form of cubic spline method is intro- duced to confirm the exact period of variable star. For the classification of new variable stars discovered and entering them in the “General Catalogue of Vari- able Stars” or other databases like “Variable Star Index“, the characteristics of the variability has to be quantified in term of variable star parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop several algorithms for computations in Galois extensions of p-adic fields. Our algorithms are based on existing algorithms for number fields and are exact in the sense that we do not need to consider approximations to p-adic numbers. As an application we describe an algorithmic approach to prove or disprove various conjectures for local and global epsilon constants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic programming is known to provide good solutions for many problems like the evolution of network protocols and distributed algorithms. In such cases it is most likely a hardwired module of a design framework that assists the engineer to optimize specific aspects of the system to be developed. It provides its results in a fixed format through an internal interface. In this paper we show how the utility of genetic programming can be increased remarkably by isolating it as a component and integrating it into the model-driven software development process. Our genetic programming framework produces XMI-encoded UML models that can easily be loaded into widely available modeling tools which in turn posses code generation as well as additional analysis and test capabilities. We use the evolution of a distributed election algorithm as an example to illustrate how genetic programming can be combined with model-driven development. This example clearly illustrates the advantages of our approach – the generation of source code in different programming languages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data mining means to summarize information from large amounts of raw data. It is one of the key technologies in many areas of economy, science, administration and the internet. In this report we introduce an approach for utilizing evolutionary algorithms to breed fuzzy classifier systems. This approach was exercised as part of a structured procedure by the students Achler, Göb and Voigtmann as contribution to the 2006 Data-Mining-Cup contest, yielding encouragingly positive results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this report, we discuss the application of global optimization and Evolutionary Computation to distributed systems. We therefore selected and classified many publications, giving an insight into the wide variety of optimization problems which arise in distributed systems. Some interesting approaches from different areas will be discussed in greater detail with the use of illustrative examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed systems are one of the most vital components of the economy. The most prominent example is probably the internet, a constituent element of our knowledge society. During the recent years, the number of novel network types has steadily increased. Amongst others, sensor networks, distributed systems composed of tiny computational devices with scarce resources, have emerged. The further development and heterogeneous connection of such systems imposes new requirements on the software development process. Mobile and wireless networks, for instance, have to organize themselves autonomously and must be able to react to changes in the environment and to failing nodes alike. Researching new approaches for the design of distributed algorithms may lead to methods with which these requirements can be met efficiently. In this thesis, one such method is developed, tested, and discussed in respect of its practical utility. Our new design approach for distributed algorithms is based on Genetic Programming, a member of the family of evolutionary algorithms. Evolutionary algorithms are metaheuristic optimization methods which copy principles from natural evolution. They use a population of solution candidates which they try to refine step by step in order to attain optimal values for predefined objective functions. The synthesis of an algorithm with our approach starts with an analysis step in which the wanted global behavior of the distributed system is specified. From this specification, objective functions are derived which steer a Genetic Programming process where the solution candidates are distributed programs. The objective functions rate how close these programs approximate the goal behavior in multiple randomized network simulations. The evolutionary process step by step selects the most promising solution candidates and modifies and combines them with mutation and crossover operators. This way, a description of the global behavior of a distributed system is translated automatically to programs which, if executed locally on the nodes of the system, exhibit this behavior. In our work, we test six different ways for representing distributed programs, comprising adaptations and extensions of well-known Genetic Programming methods (SGP, eSGP, and LGP), one bio-inspired approach (Fraglets), and two new program representations called Rule-based Genetic Programming (RBGP, eRBGP) designed by us. We breed programs in these representations for three well-known example problems in distributed systems: election algorithms, the distributed mutual exclusion at a critical section, and the distributed computation of the greatest common divisor of a set of numbers. Synthesizing distributed programs the evolutionary way does not necessarily lead to the envisaged results. In a detailed analysis, we discuss the problematic features which make this form of Genetic Programming particularly hard. The two Rule-based Genetic Programming approaches have been developed especially in order to mitigate these difficulties. In our experiments, at least one of them (eRBGP) turned out to be a very efficient approach and in most cases, was superior to the other representations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The organic agricultural sector of Uganda is among the most developed in Africa in terms of its professional institutional network and high growth rates of number of certified farmers and land area. Smallholder farmers are certified organic through contract production for export companies using a group certification scheme (internal control system - ICS). The ICS is a viable and well-accepted tool to certify small-scale producers in developing countries all over the world. Difficulties in certification are still stated to be among the main constraints for Uganda’s organic sector development. Therefore, this paper reports a qualitative case study comprising 34 expert interviews in two organic fresh-produce export companies in central Uganda, aiming to explore the challenges which underlie organic certification with ICS. The study shows that farmers cannot be labelled as ‘organic by default’ but deliberately engage in organic production as a marketing strategy. The small quantities purchased by the organic companies lead to a difficult marketing situation for the farmers, causing production and infiltration risks on the farm level. These risks require increased control that challenges the companies organizationally. The risks and control needs are a reason to involve farmers in ICS procedures and innovatively adapt the ICS by means of a bypass around formal perspective restrictions. The paper discusses different perspectives on risks, risk control and certification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In dieser Arbeit werden Algorithmen zur Untersuchung der äquivarianten Tamagawazahlvermutung von Burns und Flach entwickelt. Zunächst werden Algorithmen angegeben mit denen die lokale Fundamentalklasse, die globale Fundamentalklasse und Tates kanonische Klasse berechnet werden können. Dies ermöglicht unter anderem Berechnungen in Brauergruppen von Zahlkörpererweiterungen. Anschließend werden diese Algorithmen auf die Tamagawazahlvermutung angewendet. Die Epsilonkonstantenvermutung kann dadurch für alle Galoiserweiterungen L|K bewiesen werden, bei denen L in einer Galoiserweiterung E|Q vom Grad kleiner gleich 15 eingebettet werden kann. Für die Tamagawazahlvermutung an der Stelle 1 wird ein Algorithmus angegeben, der die Vermutung für ein gegebenes Fallbeispiel L|Q numerischen verifizieren kann. Im Spezialfall, dass alle Charaktere rational oder abelsch sind, kann dieser Algorithmus die Vermutung für L|Q sogar beweisen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In dieser Dissertation werden Methoden zur optimalen Aufgabenverteilung in Multirobotersystemen (engl. Multi-Robot Task Allocation – MRTA) zur Inspektion von Industrieanlagen untersucht. MRTA umfasst die Verteilung und Ablaufplanung von Aufgaben für eine Gruppe von Robotern unter Berücksichtigung von operativen Randbedingungen mit dem Ziel, die Gesamteinsatzkosten zu minimieren. Dank zunehmendem technischen Fortschritt und sinkenden Technologiekosten ist das Interesse an mobilen Robotern für den Industrieeinsatz in den letzten Jahren stark gestiegen. Viele Arbeiten konzentrieren sich auf Probleme der Mobilität wie Selbstlokalisierung und Kartierung, aber nur wenige Arbeiten untersuchen die optimale Aufgabenverteilung. Da sich mit einer guten Aufgabenverteilung eine effizientere Planung erreichen lässt (z. B. niedrigere Kosten, kürzere Ausführungszeit), ist das Ziel dieser Arbeit die Entwicklung von Lösungsmethoden für das aus Inspektionsaufgaben mit Einzel- und Zweiroboteraufgaben folgende Such-/Optimierungsproblem. Ein neuartiger hybrider Genetischer Algorithmus wird vorgestellt, der einen teilbevölkerungbasierten Genetischen Algorithmus zur globalen Optimierung mit lokalen Suchheuristiken kombiniert. Zur Beschleunigung dieses Algorithmus werden auf die fittesten Individuen einer Generation lokale Suchoperatoren angewendet. Der vorgestellte Algorithmus verteilt die Aufgaben nicht nur einfach und legt den Ablauf fest, sondern er bildet auch temporäre Roboterverbünde für Zweiroboteraufgaben, wodurch räumliche und zeitliche Randbedingungen entstehen. Vier alternative Kodierungsstrategien werden für den vorgestellten Algorithmus entworfen: Teilaufgabenbasierte Kodierung: Hierdurch werden alle möglichen Lösungen abgedeckt, allerdings ist der Suchraum sehr groß. Aufgabenbasierte Kodierung: Zwei Möglichkeiten zur Zuweisung von Zweiroboteraufgaben wurden implementiert, um die Effizienz des Algorithmus zu steigern. Gruppierungsbasierte Kodierung: Zeitliche Randbedingungen zur Gruppierung von Aufgaben werden vorgestellt, um gute Lösungen innerhalb einer kleinen Anzahl von Generationen zu erhalten. Zwei Umsetzungsvarianten werden vorgestellt. Dekompositionsbasierte Kodierung: Drei geometrische Zerlegungen wurden entworfen, die Informationen über die räumliche Anordnung ausnutzen, um Probleme zu lösen, die Inspektionsgebiete mit rechteckigen Geometrien aufweisen. In Simulationsstudien wird die Leistungsfähigkeit der verschiedenen hybriden Genetischen Algorithmen untersucht. Dazu wurde die Inspektion von Tanklagern einer Erdölraffinerie mit einer Gruppe homogener Inspektionsroboter als Anwendungsfall gewählt. Die Simulationen zeigen, dass Kodierungsstrategien, die auf der geometrischen Zerlegung basieren, bei einer kleinen Anzahl an Generationen eine bessere Lösung finden können als die anderen untersuchten Strategien. Diese Arbeit beschäftigt sich mit Einzel- und Zweiroboteraufgaben, die entweder von einem einzelnen mobilen Roboter erledigt werden können oder die Zusammenarbeit von zwei Robotern erfordern. Eine Erweiterung des entwickelten Algorithmus zur Behandlung von Aufgaben, die mehr als zwei Roboter erfordern, ist möglich, würde aber die Komplexität der Optimierungsaufgabe deutlich vergrößern.