804 resultados para Intelligent systems. Pipeline networks. Fuzzy logic
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
The pharmaceutical industry was consolidated in Brazil in the 1930s, and since then has become increasingly competitive. Therefore the implementation of the Toyota Production System, which aims to lean production, has become common among companies in the segment. The main efficiency indicator currently used is the Overall Equipment Effectiveness (OEE). This paper intends to, using the fuzzy model DEA-BCC, analyze the efficiency of the production lines of a pharmaceutical company in the Paraíba Valley, compare the values obtained by the model with those calculated by the OEE, identify the most sensitive machines to variation in the data input and develop a ranking of effectiveness between the consumer machinery. After the development, it is shown that the accuracy of the relationship between the two methods is approximately 57% and the line considered the most effective by the Toyota Production System is not the same as the one found by this paper
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Backgrounds Ea aims: The boundaries between the categories of body composition provided by vectorial analysis of bioimpedance are not well defined. In this paper, fuzzy sets theory was used for modeling such uncertainty. Methods: An Italian database with 179 cases 18-70 years was divided randomly into developing (n = 20) and testing samples (n = 159). From the 159 registries of the testing sample, 99 contributed with unequivocal diagnosis. Resistance/height and reactance/height were the input variables in the model. Output variables were the seven categories of body composition of vectorial analysis. For each case the linguistic model estimated the membership degree of each impedance category. To compare such results to the previously established diagnoses Kappa statistics was used. This demanded singling out one among the output set of seven categories of membership degrees. This procedure (defuzzification rule) established that the category with the highest membership degree should be the most likely category for the case. Results: The fuzzy model showed a good fit to the development sample. Excellent agreement was achieved between the defuzzified impedance diagnoses and the clinical diagnoses in the testing sample (Kappa = 0.85, p < 0.001). Conclusions: fuzzy linguistic model was found in good agreement with clinical diagnoses. If the whole model output is considered, information on to which extent each BIVA category is present does better advise clinical practice with an enlarged nosological framework and diverse therapeutic strategies. (C) 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
Muitas pesquisas estão sendo desenvolvidas buscando nos sistemas inteligentes soluções para diagnosticar falhas em máquinas elétricas. Estas falhas envolvem desde problemas elétricos, como curto-circuito numa das fases do estator, ate problemas mecânicos, como danos nos rolamentos. Dentre os sistemas inteligentes aplicados nesta área, destacam-se as redes neurais artificiais, os sistemas fuzzy, os algoritmos genéticos e os sistemas híbridos, como o neuro-fuzzy. Assim, o objetivo deste artigo é traçar um panorama geral sobre os trabalhos mais relevantes que se beneficiaram dos sistemas inteligentes nas diferentes etapas de análise e diagnóstico de falhas em motores elétricos, cuja principal contribuição está em disponibilizar diversos aspectos técnicos a fim de direcionar futuros trabalhos nesta área de aplicação.
Resumo:
La ricerca presentata è un’ampia esplorazione delle possibili applicazioni di concetti, metodi e procedure della Fuzzy Logic all’Ingegneria dei Materiali. Tale nuovo approccio è giustificato dalla inadeguatezza dei risultati conseguiti con i soli metodi tradizionali riguardo alla reologia ed alla durabilità, all’utilizzo di dati di laboratorio nella progettazione e alla necessità di usare un linguaggio (informatizzabile) che consenta una valutazione congiunta degli aspetti tecnici, culturali, economici, paesaggistici della progettazione. – In particolare, la Fuzzy Logic permette di affrontare in modo razionale l’aleatorietà delle variabili e dei dati che, nel settore specifico dei materiali in opera nel costruito dei Beni Culturali, non possono essere trattati con i metodi statistici ordinari. – La scelta di concentrare l’attenzione su materiali e strutture in opera in siti archeologici discende non solo dall’interesse culturale ed economico connesso ai sempre più numerosi interventi in questo nuovo settore di pertinenza dell’Ingegneria dei Materiali, ma anche dal fatto che, in tali contesti, i termini della rappresentatività dei campionamenti, della complessità delle interazioni tra le variabili (fisiche e non), del tempo e quindi della durabilità sono evidenti ed esasperati. – Nell’ambito di questa ricerca si è anche condotto un ampio lavoro sperimentale di laboratorio per l’acquisizione dei dati utilizzati nelle procedure di modellazione fuzzy (fuzzy modeling). In tali situazioni si è operato secondo protocolli sperimentali standard: acquisizione della composizione mineralogica tramite diffrazione di raggi X (XRD), definizione della tessitura microstrutturale con osservazioni microscopiche (OM, SEM) e porosimetria tramite intrusione forzata di mercurio (MIP), determinazioni fisiche quali la velocità di propagazione degli ultrasuoni e rotoviscosimetria, misure tecnologiche di resistenza meccanica a compressione uniassiale, lavorabilità, ecc. – Nell’elaborazione dei dati e nella modellazione in termini fuzzy, la ricerca è articolata su tre livelli: a. quello dei singoli fenomeni chimico-fisici, di natura complessa, che non hanno trovato, a tutt’oggi, una trattazione soddisfacente e di generale consenso; le applicazioni riguardano la reologia delle dispersioni ad alto tenore di solido in acqua (calci, cementi, malte, calcestruzzi SCC), la correlazione della resistenza a compressione, la gelività dei materiali porosi ed alcuni aspetti della durabilità del calcestruzzo armato; b. quello della modellazione della durabilità dei materiali alla scala del sito archeologico; le applicazioni presentate riguardano i centri di cultura nuragica di Su Monte-Sorradile, GennaMaria-Villanovaforru e Is Paras-Isili; c. quello della scelta strategica costituita dalla selezione del miglior progetto di conservazione considerando gli aspetti connessi all’Ingegneria dei Materiali congiuntamente a quelli culturali, paesaggistici ed economici; le applicazioni hanno riguardato due importanti monumenti (Anfiteatro e Terme a Mare) del sito Romano di Nora-Pula.
Resumo:
[EN]Many different complex systems depend on a large number n of mutually independent random Boolean variables. The most useful representation for these systems –usually called complex stochastic Boolean systems (CSBSs)– is the intrinsic order graph. This is a directed graph on 2n vertices, corresponding to the 2n binary n-tuples (u1, . . . , un) ∈ {0, 1} n of 0s and 1s. In this paper, different duality properties of the intrinsic order graph are rigorously analyzed in detail. The results can be applied to many CSBSs arising from any scientific, technical or social area…
Resumo:
The term Ambient Intelligence (AmI) refers to a vision on the future of the information society where smart, electronic environment are sensitive and responsive to the presence of people and their activities (Context awareness). In an ambient intelligence world, devices work in concert to support people in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network connecting these devices. This promotes the creation of pervasive environments improving the quality of life of the occupants and enhancing the human experience. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. Ambient intelligent systems are heterogeneous and require an excellent cooperation between several hardware/software technologies and disciplines, including signal processing, networking and protocols, embedded systems, information management, and distributed algorithms. Since a large amount of fixed and mobile sensors embedded is deployed into the environment, the Wireless Sensor Networks is one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes which can be deployed in a target area to sense physical phenomena and communicate with other nodes and base stations. These simple devices typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). WNS promises of revolutionizing the interactions between the real physical worlds and human beings. Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. To fully exploit the potential of distributed sensing approaches, a set of challengesmust be addressed. Sensor nodes are inherently resource-constrained systems with very low power consumption and small size requirements which enables than to reduce the interference on the physical phenomena sensed and to allow easy and low-cost deployment. They have limited processing speed,storage capacity and communication bandwidth that must be efficiently used to increase the degree of local ”understanding” of the observed phenomena. A particular case of sensor nodes are video sensors. This topic holds strong interest for a wide range of contexts such as military, security, robotics and most recently consumer applications. Vision sensors are extremely effective for medium to long-range sensing because vision provides rich information to human operators. However, image sensors generate a huge amount of data, whichmust be heavily processed before it is transmitted due to the scarce bandwidth capability of radio interfaces. In particular, in video-surveillance, it has been shown that source-side compression is mandatory due to limited bandwidth and delay constraints. Moreover, there is an ample opportunity for performing higher-level processing functions, such as object recognition that has the potential to drastically reduce the required bandwidth (e.g. by transmitting compressed images only when something ‘interesting‘ is detected). The energy cost of image processing must however be carefully minimized. Imaging could play and plays an important role in sensing devices for ambient intelligence. Computer vision can for instance be used for recognising persons and objects and recognising behaviour such as illness and rioting. Having a wireless camera as a camera mote opens the way for distributed scene analysis. More eyes see more than one and a camera system that can observe a scene from multiple directions would be able to overcome occlusion problems and could describe objects in their true 3D appearance. In real-time, these approaches are a recently opened field of research. In this thesis we pay attention to the realities of hardware/software technologies and the design needed to realize systems for distributed monitoring, attempting to propose solutions on open issues and filling the gap between AmI scenarios and hardware reality. The physical implementation of an individual wireless node is constrained by three important metrics which are outlined below. Despite that the design of the sensor network and its sensor nodes is strictly application dependent, a number of constraints should almost always be considered. Among them: • Small form factor to reduce nodes intrusiveness. • Low power consumption to reduce battery size and to extend nodes lifetime. • Low cost for a widespread diffusion. These limitations typically result in the adoption of low power, low cost devices such as low powermicrocontrollers with few kilobytes of RAMand tenth of kilobytes of program memory with whomonly simple data processing algorithms can be implemented. However the overall computational power of the WNS can be very large since the network presents a high degree of parallelism that can be exploited through the adoption of ad-hoc techniques. Furthermore through the fusion of information from the dense mesh of sensors even complex phenomena can be monitored. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas:Low Power Video Sensor Node and Video Processing Alghoritm and Multimodal Surveillance . Low Power Video Sensor Nodes and Video Processing Alghoritms In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and acceleration sensors, vision sensors generate much higher bandwidth data due to the two-dimensional nature of their pixel array. We have tackled all the constraints listed above and have proposed solutions to overcome the current WSNlimits for Video sensor node. We have designed and developed wireless video sensor nodes focusing on the small size and the flexibility of reuse in different applications. The video nodes target a different design point: the portability (on-board power supply, wireless communication), a scanty power budget (500mW),while still providing a prominent level of intelligence, namely sophisticated classification algorithmand high level of reconfigurability. We developed two different video sensor node: The device architecture of the first one is based on a low-cost low-power FPGA+microcontroller system-on-chip. The second one is based on ARM9 processor. Both systems designed within the above mentioned power envelope could operate in a continuous fashion with Li-Polymer battery pack and solar panel. Novel low power low cost video sensor nodes which, in contrast to sensors that just watch the world, are capable of comprehending the perceived information in order to interpret it locally, are presented. Featuring such intelligence, these nodes would be able to cope with such tasks as recognition of unattended bags in airports, persons carrying potentially dangerous objects, etc.,which normally require a human operator. Vision algorithms for object detection, acquisition like human detection with Support Vector Machine (SVM) classification and abandoned/removed object detection are implemented, described and illustrated on real world data. Multimodal surveillance: In several setup the use of wired video cameras may not be possible. For this reason building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. Energy efficiency for wireless smart camera networks is one of the major efforts in distributed monitoring and surveillance community. For this reason, building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. The Pyroelectric Infra-Red (PIR) sensors have been used to extend the lifetime of a solar-powered video sensor node by providing an energy level dependent trigger to the video camera and the wireless module. Such approach has shown to be able to extend node lifetime and possibly result in continuous operation of the node.Being low-cost, passive (thus low-power) and presenting a limited form factor, PIR sensors are well suited for WSN applications. Moreover techniques to have aggressive power management policies are essential for achieving long-termoperating on standalone distributed cameras needed to improve the power consumption. We have used an adaptive controller like Model Predictive Control (MPC) to help the system to improve the performances outperforming naive power management policies.
Resumo:
Nell’attuale contesto di aumento degli impatti antropici e di “Global Climate Change” emerge la necessità di comprenderne i possibili effetti di questi sugli ecosistemi inquadrati come fruitori di servizi e funzioni imprescindibili sui quali si basano intere tessiture economiche e sociali. Lo studio previsionale degli ecosistemi si scontra con l’elevata complessità di questi ultimi in luogo di una altrettanto elevata scarsità di osservazioni integrate. L’approccio modellistico appare il più adatto all’analisi delle dinamiche complesse degli ecosistemi ed alla contestualizzazione complessa di risultati sperimentali ed osservazioni empiriche. L’approccio riduzionista-deterministico solitamente utilizzato nell’implementazione di modelli non si è però sin qui dimostrato in grado di raggiungere i livelli di complessità più elevati all’interno della struttura eco sistemica. La componente che meglio descrive la complessità ecosistemica è quella biotica in virtù dell’elevata dipendenza dalle altre componenti e dalle loro interazioni. In questo lavoro di tesi viene proposto un approccio modellistico stocastico basato sull’utilizzo di un compilatore naive Bayes operante in ambiente fuzzy. L’utilizzo congiunto di logica fuzzy e approccio naive Bayes è utile al processa mento del livello di complessità e conseguentemente incertezza insito negli ecosistemi. I modelli generativi ottenuti, chiamati Fuzzy Bayesian Ecological Model(FBEM) appaiono in grado di modellizare gli stati eco sistemici in funzione dell’ elevato numero di interazioni che entrano in gioco nella determinazione degli stati degli ecosistemi. Modelli FBEM sono stati utilizzati per comprendere il rischio ambientale per habitat intertidale di spiagge sabbiose in caso di eventi di flooding costiero previsti nell’arco di tempo 2010-2100. L’applicazione è stata effettuata all’interno del progetto EU “Theseus” per il quale i modelli FBEM sono stati utilizzati anche per una simulazione a lungo termine e per il calcolo dei tipping point specifici dell’habitat secondo eventi di flooding di diversa intensità.
Resumo:
La tesi affronta il concetto di esposizione al rischio occupazionale e il suo scopo è quello di indagare l’ambiente di lavoro e il comportamento dei lavoratori, con l'obiettivo di ridurre il tasso di incidenza degli infortuni sul lavoro ed eseguire la riduzione dei rischi. In primo luogo, è proposta una nuova metodologia denominata MIMOSA (Methodology for the Implementation and Monitoring of Occupational SAfety), che quantifica il livello di "salute e sicurezza" di una qualsiasi impresa. Al fine di raggiungere l’obiettivo si è reso necessario un approccio multidisciplinare in cui concetti d’ingegneria e di psicologia sono stati combinati per sviluppare una metodologia di previsione degli incidenti e di miglioramento della sicurezza sul lavoro. I risultati della sperimentazione di MIMOSA hanno spinto all'uso della Logica Fuzzy nel settore della sicurezza occupazionale per migliorare la metodologia stessa e per superare i problemi riscontrati nell’incertezza della raccolta dei dati. La letteratura mostra che i fattori umani, la percezione del rischio e il comportamento dei lavoratori in relazione al rischio percepito, hanno un ruolo molto importante nella comparsa degli incidenti. Questa considerazione ha portato ad un nuovo approccio e ad una seconda metodologia che consiste nella prevenzione di incidenti, non solo sulla base dell'analisi delle loro dinamiche passate. Infatti la metodologia considera la valutazione di un indice basato sui comportamenti proattivi dei lavoratori e sui danni potenziali degli eventi incidentali evitati. L'innovazione consiste nell'applicazione della Logica Fuzzy per tener conto dell’"indeterminatezza" del comportamento umano e del suo linguaggio naturale. In particolare l’applicazione è incentrata sulla proattività dei lavoratori e si prefigge di impedire l'evento "infortunio", grazie alla generazione di una sorta d’indicatore di anticipo. Questa procedura è stata testata su un’azienda petrolchimica italiana.
Resumo:
In the last years radar sensor networks for localization and tracking in indoor environment have generated more and more interest, especially for anti-intrusion security systems. These networks often use Ultra Wide Band (UWB) technology, which consists in sending very short (few nanoseconds) impulse signals. This approach guarantees high resolution and accuracy and also other advantages such as low price, low power consumption and narrow-band interference (jamming) robustness. In this thesis the overall data processing (done in MATLAB environment) is discussed, starting from experimental measures from sensor devices, ending with the 2D visualization of targets movements over time and focusing mainly on detection and localization algorithms. Moreover, two different scenarios and both single and multiple target tracking are analyzed.
Resumo:
Wireless Mesh Networks (WMNs) are increasingly deployed to enable thousands of users to share, create, and access live video streaming with different characteristics and content, such as video surveillance and football matches. In this context, there is a need for new mechanisms for assessing the quality level of videos because operators are seeking to control their delivery process and optimize their network resources, while increasing the user’s satisfaction. However, the development of in-service and non-intrusive Quality of Experience assessment schemes for real-time Internet videos with different complexity and motion levels, Group of Picture lengths, and characteristics, remains a significant challenge. To address this issue, this article proposes a non-intrusive parametric real-time video quality estimator, called MultiQoE that correlates wireless networks impairments, videos’ characteristics, and users’ perception into a predicted Mean Opinion Score. An instance of MultiQoE was implemented in WMNs and performance evaluation results demonstrate the efficiency and accuracy of MultiQoE in predicting the user’s perception of live video streaming services when compared to subjective, objective, and well-known parametric solutions.
Resumo:
An integrated approach for multi-spectral segmentation of MR images is presented. This method is based on the fuzzy c-means (FCM) and includes bias field correction and contextual constraints over spatial intensity distribution and accounts for the non-spherical cluster's shape in the feature space. The bias field is modeled as a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of intensity are added into the FCM cost functions. To reduce the computational complexity, the contextual regularizations are separated from the clustering iterations. Since the feature space is not isotropic, distance measure adopted in Gustafson-Kessel (G-K) algorithm is used instead of the Euclidean distance, to account for the non-spherical shape of the clusters in the feature space. These algorithms are quantitatively evaluated on MR brain images using the similarity measures.
Resumo:
This chapter presents fuzzy cognitive maps (FCM) as a vehicle for Web knowledge aggregation, representation, and reasoning. The corresponding Web KnowARR framework incorporates findings from fuzzy logic. To this end, a first emphasis is particularly on the Web KnowARR framework along with a stakeholder management use case to illustrate the framework’s usefulness as a second focal point. This management form is to help projects to acceptance and assertiveness where claims for company decisions are actively involved in the management process. Stakeholder maps visually (re-) present these claims. On one hand, they resort to non-public content and on the other they resort to content that is available to the public (mostly on the Web). The Semantic Web offers opportunities not only to present public content descriptively but also to show relationships. The proposed framework can serve as the basis for the public content of stakeholder maps.