933 resultados para Inhibitory activity
Resumo:
Rat osseous plate alkaline phosphatase is a metalloenzyme with two binding sites for Zn2+ (sites I and III) and one for Mg2+ (site II). This enzyme is stimulated synergistically by Zn2+ and Mg2+ (Ciancaglini et al., 1992) and also by Mn2+ (Leone et al., 1995) and Co2+ (Ciancaglini et al., 1995). This study was aimed to investigate the modulation of enzyme activity by Ca2+. In the absence of Zn2+ and Mg2+, Ca2+ had no effects on the activity of Chelex-treated, Polidocanol-solubilized enzyme. However, in the presence of 10 mu M MgCl2, increasing concentration of Ca2+ were inhibitory, suggesting the displacement of Mg2+ from the magnesium-reconstituted enzyme. For calcium-reconstituted enzyme, Zn2+ concentrations Zip to 0.1 mu M were stimulatory, increasing specific activity from 130 U/mg to about 240 U/mg with a K-0.5 = 8.5 nM. Above 0.1 mu M Zn2+ exerted a strong inhibitory effect and concentrations of Ca2+ up to I mM were not enough to counteract this inhibition, indicating that Ca2+ was easily displaced by Zn2+. At fixed concentrations of Ca2+, increasing concentrations of Mg2+ increased the enzyme specific activity from 472 U/mg to about 547 U/mg, but K-0.5 values were significantly affected (from 4.4 mu M to 38.0 mu M). The synergistic effects observed for the activity of Ca2+ plus magnesium-reconstituted enzyme, suggested that these two ions bind to the different sites. A model to explain the effect of Ca2+ on the activity of the enzyme is presented. (C) 1997 Elsevier B.V.
Resumo:
This report compares the in vitro activity of three cephalosporins (cephalothin, cefoxitin and ceftriaxone) against 57 Staphylococcus aureus strains isolated from cows with clinical mastitis on the basis of the minimal inhibitory (MIC) and minimal bactericidal concentrations (MBC). The majority of the S aureus strains showed resistance to cefoxitin and ceftriaxone and sensitivity to cephalothin. The highest MICs and MBCs were found for cefoxitin and ceftriaxone. Antimicrobial tolerance (MBC/MIC greater-than-or-equal-to 32:1) was observed in relation to cephalothin and ceftriaxone. The data suggest that these cephalosporins may not be effective for the treatment of staphylococcal bovine mastitis. The precise definition of their antimicrobial efficacies requires more detailed in vitro and in vivo studies.
Resumo:
Objective: Oropouche, Caraparu, Guama, Guaroa and Tacaiuma are ssRNA viruses that belong to the genus Orthobunyavirus and have been associated with human febrile illnesses and/or encephalitis. In this study, we evaluated the antiviral action of mycophenolic acid (MPA) on these orthobunyaviruses to achieve a therapeutic agent to treat the diseases caused by these viruses. Methods: the in vitro antiviral evaluation to MPA was done by using plaque assay at different periods of treatment. Results: Results showed that MPA at a concentration of 10 mu g/ml has significant antiviral activity on Tacaiuma virus when treatment was initiated either 24 h before or 2 h after viral infection. Moreover, MPA has an inhibitory effect on Guama virus replication, but only when treatment was initiated before cell infection. Addition of guanosine in the culture reverted the inhibitory effect of MPA on Tacaiuma and Guama viruses, suggesting that the antiviral activity of this substance was via depletion of the intracellular guanosine pool. Conclusion: Our results suggest that MPA would not be a good therapeutic agent to treat the diseases caused by Oropouche, Caraparu, Guama, Guaroa, and Tacaiuma viruses.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We investigated the antiviral activity of an aliphatic nitro compound (NC) isolated from Heteropteris aphrodisiaca O. Mach. (Malpighiaceae), a Brazilian medicinal ptant. The NC was tested for its antiviral activity against poliovirus type 1 (PV-1) and bovine herpes virus type 1 (BHV-1) by plaque reduction assay in cell culture. The NC showed a moderate antiviral activity against PV-1 and BHV-1 in HEp-2 celts, and the 50% inhibitory concentration (IC50) were 22.01 mu g/ml (selectivity index (SI) = 2.83) and 21.10 mu g/mi (SI = 2.95), respectivety. At the highest concentration of the drug (40 mu g/ml) a reduction of approximately 80% in plaque assay was observed for both viruses. The treatment of cells or virus prior to infection did not inhibit the replication of virus strains. (C) 2006 Elsevier GmbH. All rights reserved.
Resumo:
The inhibitory effect of leaves extracts of Carnavalia ensiformis on the development of the symbiotic fungus of the leaf-cutting ants Atta sexdens (Forel) was evaluated. The hexane extract showed highest activity at concentration of 1000 μg/mL. Chromatographic separations of this extract have led to the isolation of a mixture of fatty acids which showed the same activity of the crude extract.
Resumo:
Propolis is a resinous material collected by bees from the buds or other parts of plants. It is known for its biological properties, having antibacterial, antifungal and healing properties. The antifungal activity of propolis was studied in sensitivity tests on 80 strains of Candida yeasts: 20 strains of Candida albicans, 20 strains of Candida tropicalis, 20 strains of Candida krusei and 15 strains of Candida guilliermondii. The yeasts showed a clear antifungal activity with the following order of sensitivity: C. albicans > C. tropicalis > C. krusei > C. guilliermondii. Patients with full dentures who used a hydroalcoholic propolis extract showed a decrease in the number of Candida.
Resumo:
Galectin-1 (Gal-1), the prototype of a family of β -galactoside-binding proteins, has been shown to attenuate experimental acute and chronic inflammation. In view of the fact that endothelial cells (ECs), but not human polymorphonuclear leukocytes (PMNs), expressed Gal-1 we tested here the hypothesis that the protein could modulate leukocyte-EC interaction in inflammatory settings. In vitro, human recombinant (hr) Gal-1 inhibited PMN chemotaxis and trans-endothelial migration. These actions were specific as they were absent if Gal-1 was boiled or blocked by neutralizing antiserum. In vivo, hrGal-1 (optimum effect at 0.3 μg equivalent to 20 pmol) inhibited interleukin-1β-induced PMN recruitment into the mouse peritoneal cavity. Intravital microscopy analysis showed that leukocyte flux, but not their rolling velocity, was decreased by an anti-inflammatory dose of hrGal-1. Binding of biotinylated Gal-1 to resting and post-adherent human PMNs occurred at concentrations inhibitory in the chemotaxis and transmigration assays. In addition, the pattern of Gal-1 binding was differentially modulated by PMN or EC activation. In conclusion, these data suggest the existence of a previously unrecognized function of Gal-1, that is inhibition of leukocyte rolling and extravasation in experimental inflammation. It is possible that endogenous Gal-1 may be part of a novel anti-inflammatory loop in which the endothelium is the source of the protein and the migrating PMNs the target for its anti-inflammatory action.
Resumo:
Essential oils were obtained from fennel seeds, dill, cumin and coriander. Their antimicrobial activity was tested on isolated clinical specimens of patients treated at the University Hospital of the School of Medicine of Botucatu, SP, UNESP. Microorganisms were grown in BHI (Brain Heart Infusion/Oxoid) at 37oC/18 hours and resuspended in 0,5 Mac Farland's Standard (1,5 x 108 CFU/mL). The diffusion method was performed, putting 10 μl of the essential oils on paper disks (6mm of diameter) (Blank Disks/CECON) at 37oC/24 hours. After this period, the disks were put on plates containing Mueller Hinton Agar (Oxoid) and inoculated with the microorganisms. After 48 hours at 37oC, inhibitory zones were measured (mm) for the respective oils and strains. The essential oil from Anethum graveolens showed antimicrobial activity against Staphylococcus aureus (inhibitory zone=18 mm), Salmonella sp. (=11 mm) and E. coli (10 mm). The Cuminum cyminum essential oil was effective against E. coli, P. aeruginosa and Salmonella sp. and their inhibitory zones were 18, 10 and 23 mm, respectively. Coriandrum sativum oil was active only against Salmonella sp. (18 mm) and Foeniculum vulgare inhibited only E. coli (9 mm).
Resumo:
Propolis is a natural resinous substance collected by bees from tree exudates and secretions. Its antimicrobial activity has been investigated and inhibitory action on Staphylococcus aureus growth was evaluated The in vitro synergism between ethanolic extract of propolis (EEP) and antimicrobial drugs by two susceptibility tests (Kirby and Bauer and E-Test) on 25 S. aureus strains was evaluated Petri dishes with sub-inhibitory concentrations of EEP were incubated with 13 drugs using Kirby and Bauer method and synergism between EEP and five drugs [choramphenicol (CLO), gentamicin (GEN), netilmicin (NET), tetracycline (TET), and vancomycin (VAN)] was observed. Nine drugs were assayed by the E-test method and five of them exhibited a synergism [CLO, GEN, NET, TET, and clindamycin (CLI)]. The results demonstrated the synergism between EEP and antimicrobial drugs, especially those agents that interfere on bacterial protein synthesis.
Resumo:
Human monocytes lack fungicidal activity against high virulent strains of Paracoccidioides brasiliensis, the etiological agent of paracoccidioidomycosis, even after IFN-γ activation. However, monocytes treated with indomethacin (INDO) or INDO plus IFN-γ effectively killed this fungus, suggesting an inhibitory role of prostaglandins in this process. Thus, the purpose of this work was to test if this regulatory effect of prostaglandin was associated with alterations on H2O2 production and/or on modulatory cytokines levels, such as TNF-α, IL-10, and IL-6. Peripheral blood monocytes obtained from 10 healthy donors were incubated for 18 hours in the presence or absence of IFN-γ, INDO, or IFN-γ plus INDO, and further challenged with a high virulent strain of P. brasiliensis (Pb18) for 4 hours. Then, the monocytes cultures were evaluated for H2O2 release and fungicidal activity calculated by counting the colony forming units after plating. Moreover, on supernatants of the same cultures, TNF-α, IL-10, IL-6, and PGE2 concentrations were evaluated by ELISA. Monocytes treated with INDO or INDO plus IFN-γ presented higher fungicidal activity associated with the release of higher levels of H2O2 and TNF-α, but lesser levels of PGE2, when compared to nontreated cells. However, the levels of IL-10 and IL-6 were similar between treated and nontreated cells. The results suggest that human monocytes when challenged with high virulent strains of P. brasiliensis produce prostaglandins that inhibit the fungicidal activity of these cells by reducing H2O2 and TNF-α levels.
Resumo:
Uncaria tomentosa is considered a medicinal plant used over centuries by the peruvian population as an alternative treatment for several diseases. Many microorganisms usually inhabit the human oral cavity and under certain conditions can become etiologic agents of diseases. The aim of the present study was to evaluate the antimicrobial activity of different concentrations of Uncaria tomentosa on different strains of microorganisms isolated from the human oral cavity. Micropulverized Uncaria tomentosa was tested in vitro to determine the minimum inhibitory concentration (MIC) on selected microbial strains. The tested strains were oral clinical isolates of Streptococcus mutans, Staphylococcus spp., Candida albicans, Enterobacteriaceae and Pseudomonas aeruginosa. The tested concentrations of Uncaria tomentosa ranged from 0.25-5% in Müeller-Hinton agat. Three percent Uncaria tomentosa inhibited 8% of Enterobacteriaceae isolates, 52% of S. mutans and 96% of Staphylococcus spp. The tested concentrations did not present inhibitory effect on P. aeruginosa and C. albicans. It could be concluded that micropulverized Uncaria tomentosa presented antimicrobial activity on Enterobacteriaceae, S. mutans and Staphylococcus spp. isolates.
Resumo:
Molecular neurobiology has provided an explanation of mechanisms supporting mental functions as learning, memory, emotion and consciousness. However, an explanatory gap remains between two levels of description: molecular mechanisms determining cellular and tissue functions, and cognitive functions. In this paper we review molecular and cellular mechanisms that determine brain activity, and then hypothetize about their relation with cognition and consciousness. The brain is conceived of as a dynamic system that exchanges information with the whole body and the environment. Three explanatory hypotheses are presented, stating that: a) brain tissue function is coordinated by macromolecules controlling ion movements, b) structured (amplitude, frequency and phase-modulated) local field potentials generated by organized ionic movement embody cognitive information patterns, and c) conscious episodes are constructed by a large-scale mechanism that uses oscillatory synchrony to integrate local field patterns. © by São Paulo State University.