965 resultados para Industrial process
Resumo:
The application of systems thinking to designing, managing, and improving business processes has developed a new "holonic-based" process modeling methodology. The theoretical background and the methodology are described using examples taken from a large organization designing and manufacturing capital goods equipment operating within a complex and dynamic environment. A key point of differentiation attributed to this methodology is that it allows a set of models to be produced without taking a task breakdown approach but instead uses systems thinking and a construct known as the "holon" to build process descriptions as a system of systems (i.e., a holarchy). The process-oriented holonic modeling methodology has been used for total quality management and business process engineering exercises in different industrial sectors and builds models that connect the strategic vision of a company to its operational processes. Exercises have been conducted in response to environmental pressures to make operations align with strategic thinking as well as becoming increasingly agile and efficient. This unique methodology is best applied in environments of high complexity, low volume, and high variety, where repeated learning opportunities are few and far between (e.g., large development projects). © 2007 IEEE.
Resumo:
Site selection is a key activity for quarry expansion to support cement production, and is governed by factors such as resource availability, logistics, costs, and socio-economic-environmental factors. Adequate consideration of all the factors facilitates both industrial productivity and sustainable economic growth. This study illustrates the site selection process that was undertaken for the expansion of limestone quarry operations to support cement production in Barbados. First, alternate sites with adequate resources to support a 25-year development horizon were identified. Second, technical and socio-economic-environmental factors were then identified. Third, a database was developed for each site with respect to each factor. Fourth, a hierarchical model in analytic hierarchy process (AHP) framework was then developed. Fifth, the relative ranking of the alternate sites was then derived through pair wise comparison in all the levels and through subsequent synthesizing of the results across the hierarchy through computer software (Expert Choice). The study reveals that an integrated framework using the AHP can help select a site for the quarry expansion project in Barbados.
Resumo:
Site selection is a key activity for quarry expansion to support cement production, and is governed by factors such as resource availability, logistics, costs, and socio-environmental factors. Adequate consideration of all factors facilitates both industrial productivity and sustainable economic growth. This study illustrates the site selection process that was undertaken for the expansion of limestone quarry operations to support cement production in Barbados. First, alternate sites with adequate resources to support a 25-year development horizon were identified. Second, socio-environmental conditions were described and potential impacts identified. Third, a comparative matrix was constructed to evaluate relative site characteristics with respect to physical, ecological, socio-cultural and economic factors. The study shows that environmental factors were essential to the final site recommendation.
Resumo:
The doctoral research process is the entry path for the academic profession. Traditionally it is explained by reference to another professional entry path, the industrial apprenticeship. Revisiting a paper and discussion originally held at the Marketing Education Group conference in 1991, we explore the implications and limitations of this metaphorical model, suggest alternatives and consider the interaction between student characteristics and supervisory approach. Through this process we offer marketing academics a vast range of unflattering metaphors to employ in describing themselves, their students, their supervisors and their colleagues.
Resumo:
Wastewater treatment coupled with energy crop cultivation provides an attractive source of cheap feedstock. This study reviews an advanced, closed-loop bioenergy conversion process [biothermal valorisation of biomass (BtVB)], in which pyroformer is coupled to a gasifier. BtVB process was developed at European Bioenergy Research Institute (EBRI), Aston University, UK and demonstrates an improved method for thermal conversion of ash-rich biomass.
Resumo:
The thesis presents an experimentally validated modelling study of the flow of combustion air in an industrial radiant tube burner (RTB). The RTB is used typically in industrial heat treating furnaces. The work has been initiated because of the need for improvements in burner lifetime and performance which are related to the fluid mechanics of the com busting flow, and a fundamental understanding of this is therefore necessary. To achieve this, a detailed three-dimensional Computational Fluid Dynamics (CFD) model has been used, validated with experimental air flow, temperature and flue gas measurements. Initially, the work programme is presented and the theory behind RTB design and operation in addition to the theory behind swirling flows and methane combustion. NOx reduction techniques are discussed and numerical modelling of combusting flows is detailed in this section. The importance of turbulence, radiation and combustion modelling is highlighted, as well as the numerical schemes that incorporate discretization, finite volume theory and convergence. The study first focuses on the combustion air flow and its delivery to the combustion zone. An isothermal computational model was developed to allow the examination of the flow characteristics as it enters the burner and progresses through the various sections prior to the discharge face in the combustion area. Important features identified include the air recuperator swirler coil, the step ring, the primary/secondary air splitting flame tube and the fuel nozzle. It was revealed that the effectiveness of the air recuperator swirler is significantly compromised by the need for a generous assembly tolerance. Also, there is a substantial circumferential flow maldistribution introduced by the swirier, but that this is effectively removed by the positioning of a ring constriction in the downstream passage. Computations using the k-ε turbulence model show good agreement with experimentally measured velocity profiles in the combustion zone and proved the use of the modelling strategy prior to the combustion study. Reasonable mesh independence was obtained with 200,000 nodes. Agreement was poorer with the RNG k-ε and Reynolds Stress models. The study continues to address the combustion process itself and the heat transfer process internal to the RTB. A series of combustion and radiation model configurations were developed and the optimum combination of the Eddy Dissipation (ED) combustion model and the Discrete Transfer (DT) radiation model was used successfully to validate a burner experimental test. The previously cold flow validated k-ε turbulence model was used and reasonable mesh independence was obtained with 300,000 nodes. The combination showed good agreement with temperature measurements in the inner and outer walls of the burner, as well as with flue gas composition measured at the exhaust. The inner tube wall temperature predictions validated the experimental measurements in the largest portion of the thermocouple locations, highlighting a small flame bias to one side, although the model slightly over predicts the temperatures towards the downstream end of the inner tube. NOx emissions were initially over predicted, however, the use of a combustion flame temperature limiting subroutine allowed convergence to the experimental value of 451 ppmv. With the validated model, the effectiveness of certain RTB features identified previously is analysed, and an analysis of the energy transfers throughout the burner is presented, to identify the dominant mechanisms in each region. The optimum turbulence-combustion-radiation model selection was then the baseline for further model development. One of these models, an eccentrically positioned flame tube model highlights the failure mode of the RTB during long term operation. Other models were developed to address NOx reduction and improvement of the flame profile in the burner combustion zone. These included a modified fuel nozzle design, with 12 circular section fuel ports, which demonstrates a longer and more symmetric flame, although with limited success in NOx reduction. In addition, a zero bypass swirler coil model was developed that highlights the effect of the stronger swirling combustion flow. A reduced diameter and a 20 mm forward displaced flame tube model shows limited success in NOx reduction; although the latter demonstrated improvements in the discharge face heat distribution and improvements in the flame symmetry. Finally, Flue Gas Recirculation (FGR) modelling attempts indicate the difficulty of the application of this NOx reduction technique in the Wellman RTB. Recommendations for further work are made that include design mitigations for the fuel nozzle and further burner modelling is suggested to improve computational validation. The introduction of fuel staging is proposed, as well as a modification in the inner tube to enhance the effect of FGR.
Resumo:
This thesis examines the British Bus and Tram Industry from 1889 to 1988. The first determinant of the pattern of industrial relations is the development of the labour-process. The labour process changes with the introduction of new technology (electrified trams and mechanised buses), the concentration and centralisation of ownership, the decline of competition, changing market position, municipal and state regulation, ownership and control. The tram industry, as a consequence of electrification, is almost wholly municipally owned and the history of the labour process from horse-trams to the decline of the industry is examined. The bus industry has a less unified structure and is examined by sector; London, Municipal, and Territorial/Provincial. The small independent sector is largely ignored. The labour process is examined from the horse-bus to the present day. The development of resistance in the labour process is discussed both as a theoretical problematic (the `Braverman Debate') and through the process of unionisation, the centralisation and bureaucratisation of the unions, the development of national bargaining structures (National Joint Industrial Council and the National Council for the Omnibus Industry), and the development of resistance to those processes. This resistance takes either a syndicalist form, or under Communist Party leadership the form of rank and file movements, or simply unofficial organisations of branch officials. The process of centralisation of the unions, bureaucratisation and the institutionalisation of bargaining and the relationship between this process and the role of the Unions in the Labour Party is examined. Neo-corporatism, that is the increasing integration of the leadership of the main Union, the T.G.W.U.with the Labour Party and with the State is discussed. In theoretical terms, this thesis considers the debate around the notion of `labour process', the relationship between labour process and labour politics and between labour process and labour history. These relationships are placed within a discussion of class consciousness.
Resumo:
This work is the result of an action-research-type study of the diversification effort of part of a major U.K. industrial company. Work in contingency theory concerning the impact of environmental factors on organizational design, and the systemic model of viable systems put forward by Stafford Beer form the theoretical basis of the vvork. The two streams of thought are compared and found to offer similar conclusions about the design of effective organizations. These findings are taken as the framework for an analysis both of organization structures for promoting innovation described in the literature, and of those employed by the company for this purpose in recent years. Much attention is given to the use of venture groups, and conclusions are drawn on particular factors which may influence their success or failure. Both theoretical considerations, and the examination of the company' s recent experience suggested that the formation of the policy of diversification, as well as the method of implementation of the police, might affect its outcorre. Attention is therefore focused on the policy-making and planning process, and in particular on possible problems that this process could generate in a multi-division company. The view finally taken of diversification effort is that it should be regarded as a learning system. This view helps to expose some ambiguities in the concepts of success and failure in this area, and demonstrates considerable weaknesses in traditional project evaluation procedures.
Resumo:
New techniques in manufacturing, popularly referred to as mechanization and automation, have been a preoccupation of social and economic theorists since the industrial revolution. A selection of relevant literature is reviewed, including the neoclassical economic treatment of technical change. This incorporates alterations to the mathematical production function and an associated increase in the efficiency with which the factors of production are converted into output. Other work emphasises the role of research and development and the process of diffusion, whereby new production techniques are propagated throughout industry. Some sociological writings attach importance to the type of production technology and its effect on the organisational structure and social relations within the factory. Nine detailed case studies are undertaken of examples of industrial innovation in the rubber, automobile, vehicle components, confectionery and clothing industries. The old and new techniques are compared for a range of variables, including capital equipment, labour employed, raw materials used, space requirements and energy consumption, which in most cases exhibit significant change with the innovation. The rate of output, labour productivity, product quality, maintenance requirements and other aspects are also examined. The process by which the change in production method was achieved is documented, including the development of new equipment and the strategy of its introduction into the factory, where appropriate. The firm, its environment, and the attitude of different sectors of the workforce are all seen to play a part in determining the motives for and consequences which flow from the innovations. The traditional association of technical progress with its labour-saving aspect, though an accurate enough description of the cases investigated, is clearly seen to afford an inadequate perspective for the proper understanding of this complex phenomenon, which also induces change in a wide range of other social, economic and technical variables.
Resumo:
This is an exploratory study in a field which previously was virtually unexplored. The aim is to identify, for the benefit of innovators, the influence of industrial design on the commercial success of new science-based products used for professional and industrial purposes. The study is a contribution to the theory of success and failure in industrial innovation. The study begins by defining the terminology. To place the investigation in context, there is then a review of past attempts by official policy-making bodies to improve the competitiveness of British products of manufacture through good design. To elucidate the meaning of good design, attempts to establish a coherent philosophy of style in British products of manufacture during the same period are also reviewed. Following these reviews, empirical evidence is presented to identify what actually takes place in successful firms when industrial design is allocated a role in the process of technological innovation. The evidence comprises seven case studies of new science-based products used for professional or industrial purposes which have received Design Council Awards. To facilitate an objective appraisal, evidence was obtained by conducting separate semi-structured interviews, the detail of which is described, with senior personnel in innovating firms, with industrial design consultants, and with professional users. The study suggests that the likelihood of commercial success in technological innovation is greater when the form, configuration, and the overall appearance of a new product, together with the detail which delineates them, are consciously and expertly controlled. Moreover, uncertainty in innovation is likely to be reduced if the appearance of a new product is consciously designed to facilitate recognition and comprehension. Industrial design is an especially significant factor when a firm innovates against a background of international competition and comparable levels of technological competence in rival firms. The likelihood of success in innovation is enhanced if design is allocated a role closely identified with the total needs of the user and discrete from the engineering function in company organisation. Recent government measures, initiated since this study began, are corroborative of the findings.
Resumo:
The process framework comprises three phases, as follows: scope the supply chain/network; identify the options for supply system architecture and select supply system architecture. It facilitates a structured approach that analyses the supply chain/network contextual characteristics, in order to ensure alignment with the appropriate supply system architecture. The process framework was derived from comprehensive literature review and archival case study analysis. The review led to the classification of supply system architectures according to their orientation, whether integrated; partially integrated; co-ordinated or independent. The classification was combined with the characteristics that influence the selection of supply system architecture to encapsulate the conceptual framework. It builds upon existing frameworks and methodologies by focusing on structured procedure; supporting project management; facilitating participation and clarifying point of entry. The process framework was initially tested in three case study applications from the food, automobile and hand tool industries. A variety of industrial settings was chosen to illustrate transferability. The case study applications indicate that the process framework is a valid approach to the problem; however, further testing is required. In particular, the use of group support system technologies to support the process and the steps involving the participation of software vendors need further testing. However, the process framework can be followed due to the clarity of its presentation. It considers the issue of timing by including alternative decision-making techniques, dependent on the constraints. It is useful for ensuring a sound business case is developed, with supporting documentation and analysis that identifies the strategic and functional requirements of supply system architecture.
Resumo:
The work described in this thesis focuses on the use of a design-of-experiments approach in a multi-well mini-bioreactor to enable the rapid establishments of high yielding production phase conditions in yeast, which is an increasingly popular host system in both academic and industrial laboratories. Using green fluorescent protein secreted from the yeast, Pichia pastoris, a scalable predictive model of protein yield per cell was derived from 13 sets of conditions each with three factors (temperature, pH and dissolved oxygen) at 3 levels and was directly transferable to a 7 L bioreactor. This was in clear contrast to the situation in shake flasks, where the process parameters cannot be tightly controlled. By further optimisating both the accumulation of cell density in batch and improving the fed-batch induction regime, additional yield improvement was found to be additive to the per cell yield of the model. A separate study also demonstrated that improving biomass improved product yield in a second yeast species, Saccharomyces cerevisiae. Investigations of cell wall hydrophobicity in high cell density P. pastoris cultures indicated that cell wall hydrophobin (protein) compositional changes with growth phase becoming more hydrophobic in log growth than in lag or stationary phases. This is possibly due to an increased occurrence of proteins associated with cell division. Finally, the modelling approach was validated in mammalian cells, showing its flexibility and robustness. In summary, the strategy presented in this thesis has the benefit of reducing process development time in recombinant protein production, directly from bench to bioreactor.
Resumo:
Drying is an important unit operation in process industry. Results have suggested that the energy used for drying has increased from 12% in 1978 to 18% of the total energy used in 1990. A literature survey of previous studies regarding overall drying energy consumption has demonstrated that there is little continuity of methods and energy trends could not be established. In the ceramics, timber and paper industrial sectors specific energy consumption and energy trends have been investigated by auditing drying equipment. Ceramic products examined have included tableware, tiles, sanitaryware, electrical ceramics, plasterboard, refractories, bricks and abrasives. Data from industry has shown that drying energy has not varied significantly in the ceramics sector over the last decade, representing about 31% of the total energy consumed. Information from the timber industry has established that radical changes have occurred over the last 20 years, both in terms of equipment and energy utilisation. The energy efficiency of hardwood drying has improved by 15% since the 1970s, although no significant savings have been realised for softwood. A survey estimating the energy efficiency and operating characteristics of 192 paper dryer sections has been conducted. Drying energy was found to increase to nearly 60% of the total energy used in the early 1980s, but has fallen over the last decade, representing 23% of the total in 1993. These results have demonstrated that effective energy saving measures, such as improved pressing and heat recovery, have been successfully implemented since the 1970s. Artificial neural networks have successfully been applied to model process characteristics of microwave and convective drying of paper coated gypsum cove. Parameters modelled have included product moisture loss, core gypsum temperature and quality factors relating to paper burning and bubbling defects. Evaluation of thermal and dielectric properties have highlighted gypsum's heat sensitive characteristics in convective and electromagnetic regimes. Modelling experimental data has shown that the networks were capable of simulating drying process characteristics to a high degree of accuracy. Product weight and temperature were predicted to within 0.5% and 5C of the target data respectively. Furthermore, it was demonstrated that the underlying properties of the data could be predicted through a high level of input noise.
Resumo:
The right manufacturing technology at the right time can enable an organisation to produce products that are cheaper, better, and made faster than those of the competition. Paradoxically, the wrong technology, or even the right technology poorly implemented, can be disastrous. The decision process through which practitioners acquire manufacturing technologies can significantly impact on their eventual capabilities and performance. This complete process has unfortunately received limited attention in previous studies. Therefore, the work presented in this paper has investigated leading research and industrial practices to create a formal and rational decision process, and then evaluated this through an extended and in-depth case study of a manufacturing technology acquisition. An analysis of previous literature, industrial practices, and the resulting decision process are all presented in this paper.
Resumo:
Site selection is a key activity for quarry expansion to support cement production, and is governed by factors such as resource availability, logistics, costs, and socio-environmental factors. Adequate consideration of all factors facilitates both industrial productivity and sustainable economic growth. This study illustrates the site selection process that was undertaken for the expansion of limestone quarry operations to support cement production in Barbados. First, alternate sites with adequate resources to support a 25-year development horizon were identified. Second, socio-environmental conditions were described and potential impacts identified. Third, a comparative matrix was constructed to evaluate relative site characteristics with respect to physical, ecological, socio-cultural and economic factors. The study shows that environmental factors were essential to the final site recommendation.