960 resultados para Indoor Soccer
Resumo:
The aim of this thesis was threefold, firstly, to compare current player tracking technology in a single game of soccer. Secondly, to investigate the running requirements of elite women’s soccer, in particular the use and application of athlete tracking devices. Finally, how can game style be quantified and defined. Study One compared four different match analysis systems commonly used in both research and applied settings: video-based time-motion analysis, a semi-automated multiple camera based system, and two commercially available Global Positioning System (GPS) based player tracking systems at 1 Hertz (Hz) and 5 Hz respectively. A comparison was made between each of the systems when recording the same game. Total distance covered during the match for the four systems ranged from 10 830 ± 770 m (semi-automated multiple camera based system) to 9 510 ± 740m (video-based time-motion analysis). At running speeds categorised as high-intensity running (>15 km⋅h-1), the semi-automated multiple camera based system reported the highest distance of 2 650 ± 530 m with video-based time-motion analysis reporting the least amount of distance covered with 1 610 ± 370 m. At speeds considered to be sprinting (>20 km⋅h-1), the video-based time-motion analysis reported the highest value (420 ± 170 m) and 1 Hz GPS units the lowest value (230 ± 160 m). These results demonstrate there are differences in the determination of the absolute distances, and that comparison of results between match analysis systems should be made with caution. Currently, there is no criterion measure for these match analysis methods and as such it was not possible to determine if one system was more accurate than another. Study Two provided an opportunity to apply player-tracking technology (GPS) to measure activity profiles and determine the physical demands of Australian international level women soccer players. In four international women’s soccer games, data was collected on a total of 15 Australian women soccer players using a 5 Hz GPS based athlete tracking device. Results indicated that Australian women soccer players covered 9 140 ± 1 030 m during 90 min of play. The total distance covered by Australian women was less than the 10 300 m reportedly covered by female soccer players in the Danish First Division. However, there was no apparent difference in the estimated "#$%&', as measured by multi-stage shuttle tests, between these studies. This study suggests that contextual information, including the “game style” of both the team and opposition may influence physical performance in games. Study Three examined the effect the level of the opposition had on the physical output of Australian women soccer players. In total, 58 game files from 5 Hz athlete-tracking devices from 13 international matches were collected. These files were analysed to examine relationships between physical demands, represented by total distance covered, high intensity running (HIR) and distances covered sprinting, and the level of the opposition, as represented by the Fédération Internationale de Football Association (FIFA) ranking at the time of the match. Higher-ranking opponents elicited less high-speed running and greater low-speed activity compared to playing teams of similar or lower ranking. The results are important to coaches and practitioners in the preparation of players for international competition, and showed that the differing physical demands required were dependent on the level of the opponents. The results also highlighted the need for continued research in the area of integrating contextual information in team sports and demonstrated that soccer can be described as having dynamic and interactive systems. The influence of playing strategy, tactics and subsequently the overall game style was highlighted as playing a significant part in the physical demands of the players. Study Four explored the concept of game style in field sports such as soccer. The aim of this study was to provide an applied framework with suggested metrics for use by coaches, media, practitioners and sports scientists. Based on the findings of Studies 1- 3 and a systematic review of the relevant literature, a theoretical framework was developed to better understand how a team’s game style could be quantified. Soccer games can be broken into key moments of play, and for each of these moments we categorised metrics that provide insight to success or otherwise, to help quantify and measure different methods of playing styles. This study highlights that to date, there had been no clear definition of game style in team sports and as such a novel definition of game style is proposed that can be used by coaches, sport scientists, performance analysts, media and general public. Studies 1-3 outline four common methods of measuring the physical demands in soccer: video based time motion analysis, GPS at 1 Hz and at 5 Hz and semiautomated multiple camera based systems. As there are no semi-automated multiple camera based systems available in Australia, primarily due to cost and logistical reasons, GPS is widely accepted for use in team sports in tracking player movements in training and competition environments. This research identified that, although there are some limitations, GPS player-tracking technology may be a valuable tool in assessing running demands in soccer players and subsequently contribute to our understanding of game style. The results of the research undertaken also reinforce the differences between methods used to analyse player movement patterns in field sports such as soccer and demonstrate that the results from different systems such as GPS based athlete tracking devices and semi-automated multiple camera based systems cannot be used interchangeably. Indeed, the magnitude of measurement differences between methods suggests that significant measurement error is evident. This was apparent even when the same technologies are used which measure at different sampling rates, such as GPS systems using either 1 Hz or 5 Hz frequencies of measurement. It was also recognised that other factors influence how team sport athletes behave within an interactive system. These factors included the strength of the opposition and their style of play. In turn, these can impact the physical demands of players that change from game to game, and even within games depending on these contextual features. Finally, the concept of what is game style and how it might be measured was examined. Game style was defined as "the characteristic playing pattern demonstrated by a team during games. It will be regularly repeated in specific situational contexts such that measurement of variables reflecting game style will be relatively stable. Variables of importance are player and ball movements, interaction of players, and will generally involve elements of speed, time and space (location)".
Resumo:
El efecto de la frecuencia portadora sobre los valores propios de los sistemas MIMO (multiple-input multiple-output) es investigado experimentalmente en un entorno indoor, considerando condiciones de línea de vista (LOS: line-of-sight) y sin línea de vista (NLOS: non-line-of-sight). Los resultados muestran una reducción en la potencia media de los valores propios del sistema MIMO, lo cual es debido a un incremento en la correlación espacial entre los sub-canales cuando la frecuencia portadora se incrementa. Este efecto causa una reducción en la capacidad del sistema MIMO.
Resumo:
A descriptive study was developed in order to compare indoor and outdoor air contamination caused by fungi and particles in seven poultry units. Twenty eight air samples of 25 litters were collected through the impaction method on malt extract agar. Air sampling and particles concentration measurement were done in the interior and also outside premises of the poultries’ pavilions. Regarding the fungal load in the air, indoor concentration of mold was higher than outside air in six poultry units. Twenty eight species / genera of fungi were identified indoor, being Scopulariopsis brevicaulis (40.5%) the most commonly isolated species and Rhizopus sp. (30.0%) the most commonly isolated genus. Concerning outdoor, eighteen species/genera of fungi were isolated, being Scopulariopsis brevicaulis (62.6%) also the most isolated. All the poultry farms analyzed presented indoor fungi different from the ones identified outdoors. Regarding particles’ contamination, PM2.5, PM5.0 and PM10 had a statistically significant difference (Mann-Whitney U test) between the inside and outside of the pavilions, with the inside more contaminated (p=.006; p=.005; p=.005, respectively). The analyzed poultry units are potential reservoirs of substantial amounts of fungi and particles and could therefore free them in the atmospheric air. The developed study showed that indoor air was more contaminated than outdoors, and this can result in emission of potentially pathogenic fungi and particles via aerosols from poultry units to the environment, which may post a considerable risk to public health and contribute to environmental pollution.
Resumo:
The quality of fish cultured using recycling units may differ from that of fish from outdoor farming units due to a range of deviating environmental determinants. This applies not only to flesh quality but also to morphological (processing) traits. This study evaluates processing yields of sibling fish cultured in two different farming units: (i) an outdoor pond aquaculture system with a flow-through regime (24.6 ± 0.2°C), and (ii) indoor tanks using a recirculation aquaculture system (RAS; 26.0 ± 1.0°C). Clear differences were observed in the most important processing traits, i.e. skinned trunk and fillet yields, which were both significantly higher (P < 0.01) in RAS fish due to significantly smaller (P < 0.05) head weight in fish of the flow-through system. Skin represented a significantly higher (P < 0.01) proportion of total weight in both RAS males and females. The most obvious difference was in the deposited fat weight, which was significantly higher (P < 0.01) in RAS fish. Visceral fat deposits were significantly higher (P < 0.01) in females and ventral and dorsal fat deposits higher (P > 0.05) in males.
Resumo:
Extended exposure to ultrafine particles (UFPs) may lead to consequences in children due to their increased susceptibility when compared to older individuals. Since children spend in average 8 h/day in primary schools, assessing the number concentrations of UFPs in these institutions is important in order to evaluate the health risk for children in primary schools caused by indoor air pollution. Thus, the purpose of this study was to assess and determine the sources of indoor UFP number concentrations in urban and rural Portuguese primary schools. Indoor and outdoor ultrafine particle (UFP) number concentrations were measured in six urban schools (US) and two rural schools (RS) located in the north of Portugal, during the heating season. The mean number concentrations of indoor UFPs were significantly higher in urban schools than in rural ones (10.4 × 10(3) and 5.7 × 10(3) pt/cm(3), respectively). Higher UFP levels were associated with higher squared meters per student, floor levels closer to the ground, chalk boards, furniture or floor covering materials made of wood and windows with double-glazing. Indoor number concentrations of ultrafine-particles were inversely correlated with indoor CO2 levels. In the present work, indoor and outdoor concentrations of UFPs in public primary schools located in urban and rural areas were assessed, and the main sources were identified for each environment. The results not only showed that UFP pollution is present in augmented concentrations in US when compared to RS but also revealed some classroom/school characteristics that influence the concentrations of UFPs in primary schools.
Resumo:
Background: persons who are 65 years or older often spend an important part of their lives indoors thus adverse indoor climate might influence their health status. Objective: to evaluate the influence of indoor air quality and contaminants on older people’s respiratory health. Design: cross-sectional study. Setting: 21 long-term care residences (LTC) in the city of Porto, Portugal. Subjects: older people living in LTC with ≥65 years old. Methods: the Portuguese version of BOLD questionnaire was administered by an interviewer to older residents able to participate (n = 143). Indoor air contaminants (IAC) were measured twice, during winter and summer in 135 areas. Mixed effects logistic regression models were used to study the association between the health questionnaire results and the monitored IAC, adjusted for age, smoking habits, gender and number of years living in the LTC. Results: cough (23%) and sputum (12%) were the major respiratory symptoms, and allergic rhinitis (18%) the main selfreported illness. Overall particulate matter up to 2.5 micrometres in size median concentration was above the reference levels both in winter and summer seasons. Peak values of particulate matter up to 10 micrometres in size (PM10), total volatile organic compounds, carbon dioxide, bacteria and fungi exceeded the reference levels. Older people exposed to PM10 above the reference levels demonstrated higher odds of allergic rhinitis (OR = 2.9, 95% CI: 1.1–7.2). Conclusion: high levels of PM10 were associated with 3-fold odds of allergic rhinitis. No association was found between indoor air chemical and biological contaminants and respiratory symptoms.
Resumo:
Indoor air quality (IAQ) parameters in 73 primary classrooms in Porto were examined for the purpose of assessing levels of volatile organic compounds (VOCs), aldehydes, particulate matter, ventilation rates and bioaerosols within and between schools, and potential sources. Levels of VOCs, aldehydes, PM2.5 , PM10 , bacteria and fungi, carbon dioxide (CO2 ), carbon monoxide, temperature and relative humidity were measured indoors and outdoors and a walkthrough survey was performed concurrently. Ventilation rates were derived from CO2 and occupancy data. Concentrations of CO2 exceeding 1000 ppm were often encountered, indicating poor ventilation. Most VOCs had low concentrations (median of individual species <5 μg/m(3) ) and were below the respective WHO guidelines. Concentrations of particulate matter and culturable bacteria were frequently higher than guidelines/reference values. The variability of VOCs, aldehydes, bioaerosol concentrations, and CO2 levels between schools exceeded the variability within schools. These findings indicate that IAQ problems may persist in classrooms where pollutant sources exist and classrooms are poorly ventilated; source control strategies (related to building location, occupant behavior, maintenance/cleaning activities) are deemed to be the most reliable for the prevention of adverse health consequences in children in schools.
Resumo:
A cross-sectional survey was conducted to characterize the indoor air quality (IAQ) in schools and its relationship with children's respiratory symptoms. Concentrations of volatile organic compounds (VOC), aldehydes, PM2.5, PM10, carbon dioxide, bacteria and fungi were assessed in 73 classrooms from 20 public primary schools located in Porto, Portugal. Children who attended the selected classrooms (n = 1134) were evaluated by a standardised health questionnaire completed by the legal guardians; spirometry and exhaled nitric oxide tests. The results indicated that no classrooms presented individual VOC pollutant concentrations higher than the WHO IAQ guidelines or by INDEX recommendations; while PM2.5, PM10 and bacteria levels exceeded the WHO air quality guidelines or national limit values. High levels of total VOC, acetaldehyde, PM2.5 and PM10 were associated with higher odds of wheezing in children. Thus, indoor air pollutants, some even at low exposure levels, were related with the development of respiratory symptoms. The results pointed out that it is crucial to take into account the unique characteristics of the public primary schools, to develop appropriate control strategies in order to reduce the exposure to indoor air pollutants and, therefore, to minimize the adverse health effects.
Resumo:
The main aim of the research project "On the Contribution of Schools to Children's Overall Indoor Air Exposure" is to study associations between adverse health effects, namely, allergy, asthma, and respiratory symptoms, and indoor air pollutants to which children are exposed to in primary schools and homes. Specifically, this investigation reports on the design of the study and methods used for data collection within the research project and discusses factors that need to be considered when designing such a study. Further, preliminary findings concerning descriptors of selected characteristics in schools and homes, the study population, and clinical examination are presented. The research project was designed in two phases. In the first phase, 20 public primary schools were selected and a detailed inspection and indoor air quality (IAQ) measurements including volatile organic compounds (VOC), aldehydes, particulate matter (PM2.5, PM10), carbon dioxide (CO2), carbon monoxide (CO), bacteria, fungi, temperature, and relative humidity were conducted. A questionnaire survey of 1600 children of ages 8-9 years was undertaken and a lung function test, exhaled nitric oxide (eNO), and tear film stability testing were performed. The questionnaire focused on children's health and on the environment in their school and homes. One thousand and ninety-nine questionnaires were returned. In the second phase, a subsample of 68 children was enrolled for further studies, including a walk-through inspection and checklist and an extensive set of IAQ measurements in their homes. The acquired data are relevant to assess children's environmental exposures and health status.