923 resultados para Indicator
Resumo:
Collagen fibrillation within articular cartilage (AC) plays a key role in joint osteoarthritis (OA) progression and, therefore, studying collagen synthesis changes could be an indicator for use in the assessment of OA. Various staining techniques have been developed and used to determine the collagen network transformation under microscopy. However, because collagen and proteoglycan coexist and have the same index of refraction, conventional methods for specific visualization of collagen tissue is difficult. This study aimed to develop an advanced staining technique to distinguish collagen from proteoglycan and to determine its evolution in relation to OA progression using optical and laser scanning confocal microscopy (LSCM). A number of AC samples were obtained from sheep joints, including both healthy and abnormal joints with OA grades 1 to 3. The samples were stained using two different trichrome methods and immunohistochemistry (IHC) to stain both colourimetrically and with fluorescence. Using optical microscopy and LSCM, the present authors demonstrated that the IHC technique stains collagens only, allowing the collagen network to be separated and directly investigated. Fluorescently-stained IHC samples were also subjected to LSCM to obtain three-dimensional images of the collagen fibres. Changes in the collagen fibres were then correlated with the grade of OA in tissue. This study is the first to successfully utilize the IHC staining technique in conjunction with laser scanning confocal microscopy. This is a valuable tool for assessing changes to articular cartilage in OA.
Resumo:
This paper develops a composite participation index (PI) to identify patterns of transport disadvantage in space and time. It is operationalised using 157 weekly activity-travel diaries data collected from three case study areas in rural Northern Ireland. A review of activity space and travel behaviour research found that six dimensional indicators of activity spaces were typically used including the number of unique locations visited, distance travelled, area of activity spaces, frequency of activity participation, types of activity participated in, and duration of participation in order to identify transport disadvantage. A combined measure using six individual indices were developed based on the six dimensional indicators of activity spaces, by taking into account the relativity of the measures for weekdays, weekends, and for a week. Factor analyses were conducted to derive weights of these indices to form the PI measure. Multivariate analysis using general linear models of the different indicators/indices identified new patterns of transport disadvantage. The research found that: indicator based measures and index based measures are complement each other; interactions between different factors generated new patterns of transport disadvantage; and that these patterns vary in space and time. The analysis also indicates that the transport needs of different disadvantaged groups are varied.
Resumo:
This paper identifies transport disadvantage using a 7 day activity-travel diary data from two rural case study areas. A composite participation index (PI) measure was developed for this study based on six indices measuring elements of travel and activity participation. Using the index the paper then goes on to compare these results, with the results obtained from other more traditional indicators used to identify transport disadvantage. These indicators are related to the size of activity space such as unique network distance travelled, number of unique locations visited, activity space area, activity duration, and fullness (shape) of activity spaces. The weaknesses of these indicator based measures are that: firstly, they do not take into account the relativity of the measure between different areas i.e. travel distance in terms of the wider context of available activities within an area; and secondly, these indicators are multi-dimensional and each represents a different qualitative aspect of travel and activity participation. As a result, six individual indices were developed to overcome these problems. These include: participation count index, participation length index, participation area index, participation duration index, participation type index, and participation frequency index. These are then aggregated to assess the relative performance in terms of these different indices and identify the nature of transport disadvantage. GIS was used to visualise individual travel patterns and to derive scores for both the indicator based measures and the index based measures. Factor analysis was conducted to derive weights of the individual indices to form the composite index measure. From this analysis, two intermediate indices were also derived using the underlying factors of the data related to these indices. Using the scores of all these measures, multiple regression analyses were conducted to identify patterns of transport disadvantage.
Resumo:
Although transport related social exclusion has been identified through zonal accessibility measures in the recent past, the debate has shifted from zonal to individual level measures. One way to identify disadvantaged individuals is to measure their size of participation in society (activity spaces). After reviewing existing literature, this paper has found two approaches to measure the activity spaces. One approach is based on the time-geographic potential path area (PPA) concept. The size of the PPA has largely been used as an indicator to the size of potential activity spaces and consequently individual accessibility. The limitations of the PPA concept have been identified in this paper and it is argued cannot be applied as a measure of social exclusion. The other approach is based on individuals’ actual travel activity participation called actual activity spaces. The size of actual activity spaces possesses a good potential measure of social exclusion. However, the indicators to measure the size of actual activity spaces are multidimensional representing the different aspects of social exclusion. The development of a unified approach has therefore been found to be important. This paper has developed a participation index (PI) using the different dimensions of actual activity spaces encountered. A framework has also been developed to operationalise the concept in GIS. The framework, on the one hand, will visualize individuals’ actual travel behaviour in real geographic space; on the other hand, it will calculate the size of their participation in society.
Resumo:
Growth and profitability are often essential parts of the overall managerial goals of firms. High growth can be seen as an indicator of success and as a mean for achieving competitive advantage and higher profitability. But high growth can also lead to a number of managerial and organisational challenges, that may affect the profitability negatively. The aim of this article is to analyse the relationship between growth and profitability for Danish gazelle firms, and furthermore to investigate how the strategic orientation of the firm affects this relationship. Our study finds a clear positive relationship between growth and profitability among gazelle firms pursuing a broad market strategy. A managerial implication of this is that the growth strategy should be clearly integrated with the general strategic orientation of the firm.
Resumo:
As research has become an important indicator of TEFL academics’ overall performance in Chinese higher education institutions, it is critical that TEFL academics are able to meet the expectation of conducting research. This mixedmethod study investigated research productivity of Chinese TEFL academics and associated influences, with the ultimate objective of constructing a framework to help build their research capacity in the future. Using an initial survey, the study provided a snapshot of research productivity of 182 TEFL academics from three Chinese higher education institutions, and individual and institutional characteristics that influenced their research productivity. Using interviews and documents as the data sources, the subsequent qualitative case study of two purposively-sampled Chinese TEFL departments provided insights into Chinese TEFL academics’ perceptions about research, and individual, institutional and departmental efforts in meeting the research expectation. The findings from this study revealed that the 182 Chinese TEFL academics’ research productivity during 2004-2008 was relatively low as a whole as was the quality of their research. This study identified four influences that impacted on Chinese TEFL academics’ research productivity: TEFL disciplinary influences, institutional and departmental research environments, individual characteristics desirable for research, and TEFL academics’ perceptions about research. Drawing upon the above findings from this study, a Framework towards Enhancing Chinese TEFL Academics’ Research Productivity (FECTARP) was constructed. The FECTARP synthesised the findings from the study, and presented a framework for Chinese institutions and TEFL departments to enhance their TEFL academics’ research capacity.
Resumo:
Urban water quality can be significantly impaired by the build-up of pollutants such as heavy metals and volatile organics on urban road surfaces due to vehicular traffic. Any control strategy for the mitigation of traffic related build-up of heavy metals and volatile organic pollutants should be based on the knowledge of their build-up processes. In the study discussed in this paper, the outcomes of a detailed experiment investigation into build-up processes of heavy metals and volatile organics are presented. It was found that traffic parameters such as average daily traffic, volume over capacity ratio and surface texture depth had similar strong correlations with the build-up of heavy metals and volatile organics. Multicriteria decision analyses revealed that the 1 - 74 um particulate fraction of total suspended solids (TSS) could be regarded as a surrogate indicator for particulate heavy metals in build-up and this same fraction of total organic carbon could be regarded as a surrogate indicator for particulate volatile organics build-up. In terms of pollutants affinity, TSS was found to be the predominant parameter for particulate heavy metals build-up and total dissolved solids was found to be the predominant parameter for he potential dissolved particulate fraction in heavy metals build-up. It was also found that land use did not play a significant role in the build-up of traffic generated heavy metals and volatile organics.
Resumo:
The value and effectiveness of driver training as a means of improving driver behaviour and road safety continues to fuel research and societal debates. Knowledge about what are the characteristics of safe driving that need to be learnt is extensive. Research has shown that young drivers are over represented in crash statistics. The encouraging fact is that novice drivers have shown improvement in road scanning pattern after training. This paper presents a driver behaviour study conducted on a closed circuit track. A group of experienced and novice drivers performed repeated multiple manoeuvres (i.e. turn, overtake and lane change) under identical conditions Variables related to the driver, vehicle and environment were recorded in a research vehicle equipped with multiple in-vehicle sensors such as GPS accelerometers, vision processing, eye tracker and laser scanner. Each group exhibited consistently a set of driving pattern characterising a particular group. Behaviour such as the indicator usage before lane change, following distance while performing a manoeuvre were among the consistent observed behaviour differentiating novice from experienced drivers. This paper will highlight the results of our study and emphasize the need for effective driver training programs focusing on young and novice drivers.
Resumo:
It is known that the depth of focus (DOF) of the human eye can be affected by the higher order aberrations. We estimated the optimal combinations of primary and secondary Zernike spherical aberration to expand the DOF and evaluated their efficiency in real eyes using an adaptive optics system. The ratio between increased DOF and loss of visual acuity was used as the performance indicator. The results indicate that primary or secondary spherical aberration alone shows similar effectiveness in extending the DOF. However, combinations of primary and secondary spherical aberration with different signs provide better efficiency for expanding the DOF. This finding suggests that the optimal combinations of primary and secondary spherical aberration may be useful in the design of optical presbyopic corrections. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes a novel approach for identifying risks in executable business processes and detecting them at run time. The approach considers risks in all phases of the business process management lifecycle, and is realized via a distributed, sensor-based architecture. At design-time, sensors are defined to specify risk conditions which when fulfilled, are a likely indicator of faults to occur. Both historical and current execution data can be used to compose such conditions. At run-time, each sensor independently notifies a sensor manager when a risk is detected. In turn, the sensor manager interacts with the monitoring component of a process automation suite to prompt the results to the user who may take remedial actions. The proposed architecture has been implemented in the YAWL system and its performance has been evaluated in practice.
Resumo:
In 2008, a three-year pilot ‘pay for performance’ (P4P) program, known as ‘Clinical Practice Improvement Payment’ (CPIP) was introduced into Queensland Health (QHealth). QHealth is a large public health sector provider of acute, community, and public health services in Queensland, Australia. The organisation has recently embarked on a significant reform agenda including a review of existing funding arrangements (Duckett et al., 2008). Partly in response to this reform agenda, a casemix funding model has been implemented to reconnect health care funding with outcomes. CPIP was conceptualised as a performance-based scheme that rewarded quality with financial incentives. This is the first time such a scheme has been implemented into the public health sector in Australia with a focus on rewarding quality, and it is unique in that it has a large state-wide focus and includes 15 Districts. CPIP initially targeted five acute and community clinical areas including Mental Health, Discharge Medication, Emergency Department, Chronic Obstructive Pulmonary Disease, and Stroke. The CPIP scheme was designed around key concepts including the identification of clinical indicators that met the set criteria of: high disease burden, a well defined single diagnostic group or intervention, significant variations in clinical outcomes and/or practices, a good evidence, and clinician control and support (Ward, Daniels, Walker & Duckett, 2007). This evaluative research targeted Phase One of implementation of the CPIP scheme from January 2008 to March 2009. A formative evaluation utilising a mixed methodology and complementarity analysis was undertaken. The research involved three research questions and aimed to determine the knowledge, understanding, and attitudes of clinicians; identify improvements to the design, administration, and monitoring of CPIP; and determine the financial and economic costs of the scheme. Three key studies were undertaken to ascertain responses to the key research questions. Firstly, a survey of clinicians was undertaken to examine levels of knowledge and understanding and their attitudes to the scheme. Secondly, the study sought to apply Statistical Process Control (SPC) to the process indicators to assess if this enhanced the scheme and a third study examined a simple economic cost analysis. The CPIP Survey of clinicians elicited 192 clinician respondents. Over 70% of these respondents were supportive of the continuation of the CPIP scheme. This finding was also supported by the results of a quantitative altitude survey that identified positive attitudes in 6 of the 7 domains-including impact, awareness and understanding and clinical relevance, all being scored positive across the combined respondent group. SPC as a trending tool may play an important role in the early identification of indicator weakness for the CPIP scheme. This evaluative research study supports a previously identified need in the literature for a phased introduction of Pay for Performance (P4P) type programs. It further highlights the value of undertaking a formal risk assessment of clinician, management, and systemic levels of literacy and competency with measurement and monitoring of quality prior to a phased implementation. This phasing can then be guided by a P4P Design Variable Matrix which provides a selection of program design options such as indicator target and payment mechanisms. It became evident that a clear process is required to standardise how clinical indicators evolve over time and direct movement towards more rigorous ‘pay for performance’ targets and the development of an optimal funding model. Use of this matrix will enable the scheme to mature and build the literacy and competency of clinicians and the organisation as implementation progresses. Furthermore, the research identified that CPIP created a spotlight on clinical indicators and incentive payments of over five million from a potential ten million was secured across the five clinical areas in the first 15 months of the scheme. This indicates that quality was rewarded in the new QHealth funding model, and despite issues being identified with the payment mechanism, funding was distributed. The economic model used identified a relative low cost of reporting (under $8,000) as opposed to funds secured of over $300,000 for mental health as an example. Movement to a full cost effectiveness study of CPIP is supported. Overall the introduction of the CPIP scheme into QHealth has been a positive and effective strategy for engaging clinicians in quality and has been the catalyst for the identification and monitoring of valuable clinical process indicators. This research has highlighted that clinicians are supportive of the scheme in general; however, there are some significant risks that include the functioning of the CPIP payment mechanism. Given clinician support for the use of a pay–for-performance methodology in QHealth, the CPIP scheme has the potential to be a powerful addition to a multi-faceted suite of quality improvement initiatives within QHealth.
Resumo:
Dry eye syndrome is one of the most commonly reported eye health conditions. Dynamic-area highspeed videokeratoscopy (DA-HSV) represents a promising alternative to the most invasive clinical methods for the assessment of the tear film surface quality (TFSQ), particularly as Placido-disk videokeratoscopy is both relatively inexpensive and widely used for corneal topography assessment. Hence, improving this technique to diagnose dry eye is of clinical significance and the aim of this work. First, a novel ray-tracing model is proposed that simulates the formation of a Placido image. This model shows the relationship between tear film topography changes and the obtained Placido image and serves as a benchmark for the assessment of indicators of the ring’s regularity. Further, a novel block-feature TFSQ indicator is proposed for detecting dry eye from a series of DA-HSV measurements. The results of the new indicator evaluated on data from a retrospective clinical study, which contains 22 normal and 12 dry eyes, have shown a substantial improvement of the proposed technique to discriminate dry eye from normal tear film subjects. The best discrimination was obtained under suppressed blinking conditions. In conclusion,this work highlights the potential of the DA-HSV as a clinical tool to diagnose dry eye syndrome.
Resumo:
Objective To examine the prevalence of multiple types of maltreatment (MTM), potentially confounding factors and associations with depression, anxiety and self-esteem among adolescents in Viet Nam. Methods In 2006 we conducted a cross-sectional survey of 2591 students (aged 12–18 years; 52.1% female) from randomly-selected classes in eight secondary schools in urban (Hanoi) and rural (Hai Duong) areas of northern Viet Nam (response rate, 94.7%). Sequential multiple regression analyses were performed to estimate the relative influence of individual, family and social characteristics and of eight types of maltreatment, including physical, emotional and sexual abuse and physical or emotional neglect, on adolescent mental health. Findings Females reported more neglect and emotional abuse, whereas males reported more physical abuse, but no statistically significant difference was found between genders in the prevalence of sexual abuse. Adolescents were classified as having nil (32.6%), one (25.9%), two (20.7%), three (14.5%) or all four (6.3%) maltreatment types. Linear bivariate associations between MTM and depression, anxiety and low self-esteem were observed. After controlling for demographic and family factors, MTM showed significant independent effects. The proportions of the variance explained by the models ranged from 21% to 28%. Conclusion The combined influence of adverse individual and family background factors and of child maltreatment upon mental health in adolescents in Viet Nam is consistent with research in non-Asian countries. Emotional abuse was strongly associated with each health indicator. In Asian communities where child abuse is often construed as severe physical violence, it is important to emphasize the equally pernicious effects of emotional maltreatment.
Resumo:
A forced landing is an unscheduled event in flight requiring an emergency landing, and is most commonly attributed to engine failure, failure of avionics or adverse weather. Since the ability to conduct a successful forced landing is the primary indicator for safety in the aviation industry, automating this capability for unmanned aerial vehicles (UAVs) will help facilitate their integration into, and subsequent routine operations over civilian airspace. Currently, there is no commercial system available to perform this task; however, a team at the Australian Research Centre for Aerospace Automation (ARCAA) is working towards developing such an automated forced landing system. This system, codenamed Flight Guardian, will operate onboard the aircraft and use machine vision for site identification, artificial intelligence for data assessment and evaluation, and path planning, guidance and control techniques to actualize the landing. This thesis focuses on research specific to the third category, and presents the design, testing and evaluation of a Trajectory Generation and Guidance System (TGGS) that navigates the aircraft to land at a chosen site, following an engine failure. Firstly, two algorithms are developed that adapts manned aircraft forced landing techniques to suit the UAV planning problem. Algorithm 1 allows the UAV to select a route (from a library) based on a fixed glide range and the ambient wind conditions, while Algorithm 2 uses a series of adjustable waypoints to cater for changing winds. A comparison of both algorithms in over 200 simulated forced landings found that using Algorithm 2, twice as many landings were within the designated area, with an average lateral miss distance of 200 m at the aimpoint. These results present a baseline for further refinements to the planning algorithms. A significant contribution is seen in the design of the 3-D Dubins Curves planning algorithm, which extends the elementary concepts underlying 2-D Dubins paths to account for powerless flight in three dimensions. This has also resulted in the development of new methods in testing for path traversability, in losing excess altitude, and in the actual path formation to ensure aircraft stability. Simulations using this algorithm have demonstrated lateral and vertical miss distances of under 20 m at the approach point, in wind speeds of up to 9 m/s. This is greater than a tenfold improvement on Algorithm 2 and emulates the performance of manned, powered aircraft. The lateral guidance algorithm originally developed by Park, Deyst, and How (2007) is enhanced to include wind information in the guidance logic. A simple assumption is also made that reduces the complexity of the algorithm in following a circular path, yet without sacrificing performance. Finally, a specific method of supplying the correct turning direction is also used. Simulations have shown that this new algorithm, named the Enhanced Nonlinear Guidance (ENG) algorithm, performs much better in changing winds, with cross-track errors at the approach point within 2 m, compared to over 10 m using Park's algorithm. A fourth contribution is made in designing the Flight Path Following Guidance (FPFG) algorithm, which uses path angle calculations and the MacCready theory to determine the optimal speed to fly in winds. This algorithm also uses proportional integral- derivative (PID) gain schedules to finely tune the tracking accuracies, and has demonstrated in simulation vertical miss distances of under 2 m in changing winds. A fifth contribution is made in designing the Modified Proportional Navigation (MPN) algorithm, which uses principles from proportional navigation and the ENG algorithm, as well as methods specifically its own, to calculate the required pitch to fly. This algorithm is robust to wind changes, and is easily adaptable to any aircraft type. Tracking accuracies obtained with this algorithm are also comparable to those obtained using the FPFG algorithm. For all three preceding guidance algorithms, a novel method utilising the geometric and time relationship between aircraft and path is also employed to ensure that the aircraft is still able to track the desired path to completion in strong winds, while remaining stabilised. Finally, a derived contribution is made in modifying the 3-D Dubins Curves algorithm to suit helicopter flight dynamics. This modification allows a helicopter to autonomously track both stationary and moving targets in flight, and is highly advantageous for applications such as traffic surveillance, police pursuit, security or payload delivery. Each of these achievements serves to enhance the on-board autonomy and safety of a UAV, which in turn will help facilitate the integration of UAVs into civilian airspace for a wider appreciation of the good that they can provide. The automated UAV forced landing planning and guidance strategies presented in this thesis will allow the progression of this technology from the design and developmental stages, through to a prototype system that can demonstrate its effectiveness to the UAV research and operations community.