999 resultados para Indústria automobilística - Inovações tecnológicas
Resumo:
Through observation of production process of a Vale do Paraiba’s automobile industry, one can encounter in need of improvement related to large uncertainties and variations in the production environment, a fact that inspired the search for solutions that can respond quickly to these changes. This way, the paper describes the development of a flexible manufacturing model, which aims to optimize the process in an automotive sub-assembly industry of the Paraíba Valley. The main objective is to propose a method to promote viable alternatives to easing the assembly of parallel sub performed the assembly of cars. For the construction of the model was necessary to explore concepts of flexible manufacturing and making the data presented in literature, which were vital to ensure the development of the method. The concepts discussed are usually presented at an undergraduate degree in Engineering. Data compiled by the model are able to serve as a strategic benchmark for decision making by managers. Featuring alternative response variables and uncertainties of the organizational environment, a fact that facilitates the management of human resources and productive
Resumo:
Due to greater productivity in the auto industry and the high competition in the current market, employees are required to perform repeated movements and often, with short intervals of rest. This daily exposure causes muscle tension and overloads occasional, thus creating problems and psychosocial stress. Currently companies are concerned with the welfare of the employee, where the main focus is product quality and life of the worker, thus justifying such a study. Therefore , this technical work to assist the master's thesis of graduate student Daniel Rodriguez , was developed with the objective is to analyze , develop, design and construct a coupled to a load cell device simulating a stitcher to be used in an industry the posts stapling upholstery of seats . Are the stages of design and construction detailed in this work and its positive results in relation to the technical part of the study
Resumo:
The purpose of this work was to define the processes through which the cooling of thermoplastics parts occur inside the mold cavity in an injection process. The plastic materials have become more widespread in the automobile industry and, among its manufacturing processes, injection moulding develops quickly, allowing the manufacturing of quality parts in great volumes. Data was collected from the injection of Volkswagen Gol NF 23X (Gol Generation 5). Using approximated methods for calculation for the heat Exchange inside the mould, in the cooling system, the required water flow was determined to properly cool the parts. Comparing the obtained value with Project specifications, it was verified that the method, in spite of incurring in some mistakes, is efficient in determining the flow of cooling fluid and serves as a verification tool for the parameters defined on project, and can be applied to simple projects. The definition of the cooling system, in practice, is dependent on innumerable variables and each case must be approached in itself, since the parameters for one product may not be ideal for another
Resumo:
At a time when people turn increasingly to technological innovations and virtual networks, a closer interaction with the environment can provide sensitizing experiences. One tool that facilitates this approach is the interpretative trail: its use in a Unit of Conservation (UC) allows more contact between the visitor and the nature elements. This research aimed to propose the establishment of an interpretative trail at the State Florest “Edmundo Navarro de Andrade” (FEENA) in Rio Claro (SP) with theoretical bases from Waldorf Pedagogy. The proposed trail is destined for students with 07-14 years-old, a period that the awareness is more accurate in a person, according to Waldorf tenets. On the path of the trail, we propose some educational activities at the points of interpretation: storytelling about environment; “photograph” the place with a drawing; create a song with sounds produced by the body and by nature elements; blindfold guide and a circle of people to share experiences. The activities aim to provide in the student a close and harmonious contact with oneself, with other people and with the natural world, and also serve as a support for programs of public use and environmental education at UC. The environmental awareness process in the context of FEENA - which has a significant landscape valuation - develops through the sensibilities of exterior and interior world. And also develops with the creation if images, thoughts, feelings and interdependencies relationships. Therefore, the ecologic education allows changes and formation of values and sensitive attitudes to students about the environment
Resumo:
The internal combustion engine is a heat engine widely used in the automotive industry. In order to better understand its behavior many models in the literature have been proposed in the last years. The 0-D thermodynamic model is a fairly simple tool but it is very useful to understand the phenomenon of combustion inside the chamber of internal combustion engines. In the first phase of this work, an extensive literature review was made in order to get information about this kind of analysis and, after this, apply them in a model able to calculate the instantaneous temperature and pressure in one zone of the combustion chamber of a diesel engine. Therefore some considerations were made with the aim of increasing the accuracy of the model in predicting the correct behavior of the engine, adding the combined effects of heat transfer, leakage and injection. In the second phase, the goal was to study the internal flow of a three-dimensional model of an internal combustion engine. In order to achieve this goal the software Solidworks was used to create the geometries of an engine and the suite of softwares Ansys was used to create the moving mesh (ICEM CFD and CFX-Pre) and to solve the CFD problem (Ansys CFX code). The model was able to perform the air flow simulation during the four-stroke cycle of an engine: admission, compression, expansion and exhaust. The results obtained from both models were suitable and they open a new range of possibilities for future researches on the field
Resumo:
The pharmaceutical innovations, such as the use of polymers to control drug release, create possibilities for a better action of the drug in the body, which causes a a more effective therapeutic effect and a safer treatment for the patient. In this work, were prepared and characterized matrix tablets of hydroxypropylmethylcellulose (HPMC) containing nimesulide as model drug to evaluate the performance as a controlled release system. HPMC, a cellulose ester, is a hydrophilic polymer that undergoes swelling, i.e., absorbs water and forms a gel layer controlling drug release. The characterization of powders was performed by analysis of particle size and morphology, density, compressibility index determination, flow properties and determination of swelling profile. The tablets were evaluated according to their physical parameters of quality and to the in vitro release of nimesulide, as well as the analysis of the mechanisms of drug release by appropriate mathematical models. The set of results showed that the HPMC/Nimesulide mixture exhibited satisfactory physical characteristics (size, shape, density and flow). The release profile demonstrated an effective control upon drug release in enteric environment and presented more correlation with Korsmeyer-Peppas’ and Weibull’s mathematical models, indicating that the release of nimesulide occurs through the relaxation of the polymer chains
Resumo:
In today's competitive environment of automakers, it is essential to obtain the highest efficiency of the production process. This paper presents a study in a pre-assembly of brake pipes and fuel of a vehicle where the value stream maps and information (VSM – Value Stream Mapping) were designed in order to improve the process by reducing the Lead Time Production of a product, reducing waste and decrease time between processes. This work can be divided into three stages, the first building the VSM of the initial state, the second VSM of the proposed state and finally the VSM than was actually performed and to present the gains were achieved effectively. The proposed VSM would lead to a gain of 54% in lead time and 61% in processing time, since the VSM implemented had gains of 47% in lead time and 48% in processing time even without major investments as originally proposed. Concluding that even without big investment, using the techniques of lean manufacturing is possible to achieve high levels of process efficiency
Resumo:
The weight of a vehicle has always been considered an extreme important factor, because it interferes in the performance, steering, consume, environmental impact, wear of components, among the others. Because of the new demand, consume reduction aim and gases emission increased the necessity to manufacture lighter vehicles, guaranteeing the complying with the gas emission international law. Besides the legal demand, the low weight will certainly be essential for the competitiveness for the next generation of vehicles. It is with this thinking the composite materials have been introduced in the automobilist industry, because those materials show an excellent relation of strength/weight, providing a reduction of consume and the increase of load capacity. Those factors justify the increase of interest of industry and the necessity of optimization of those materials and of their process. For this research, the field of application will be the Baja SAE Project, a project that is fully developed by engineering students, where they build a prototype single seat, off-road category, for use on hilly slopes with obstacle. This research aims to study two key components of the prototype are made of composite materials, analyzing all the processing. In addition, there is the analysis of the viability of this production parts to a Baja SAE vehicle, in order to increase their performance and reduce their weight without reducing the safety and robustness of the prototype. It was possible to achieve weight reduction of the steering subsystem with manufacturing the flywheel hybrid composite (carbon/glass) and the replacement of SAE 1010 steel by hybrid composite (carbon/aramid) in CVT box. The importance of this study is to obtain a good project for the vehicle of technical and scientific manner, contributing to the know-how to the team and providing a basis for optimization for upcoming projects
Resumo:
Pós-graduação em Relações Internacionais (UNESP - UNICAMP - PUC-SP) - FFC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The automobile industry is increasingly interested in reducing vehicle weight for greater speed, lower fuel consumption and emissions, through innovation of materials and processes. One way to do this is to seek the replacement of conventional processes by the use of structural adhesives. Structural adhesives are highly resistant materials, which can replace rivets, bolts and welds allowing the substrate / adhesive assemble is stronger than the substrate itself. One of the major advantages of gluing with respect to welding is its esthetic appearance, since it does not leave marks. For this reason, parts to be soldered require a minimum thickness so that the marks do not appear, since the pieces from gluing have no restriction as to the thickness. By replacing the vibration welding process for gluing process of the instrument panel parts of an automobile, one obtains a reduction of the thickness of the parts and therefore it decreases the weight of the car. This work aims to study the various structural adhesives that already exist on the market to be applied on the instrument panel. The mechanical test performed to measure the maximum adhesive strength was the Lap Shear Test at 23°C (room temperature), -35°C and 85°C. The types of adhesives used were the hot-melt and the bi-component. By the results obtained, it is in favor using the bi-component for application to the union of instrument panel parts
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Educação - FFC
Resumo:
This work aims to study the Dual-Phase 600 and 780 steels, which are part of technology development project materials for the automotive industry. It is worth underscoring the antagonistic properties as the Dual-Phase steel assemble, high mechanical strength and elongation due its microstructure, ferrite and martensite. These properties are obtained by a intercritical heat treatment which facilitates the formation of a hardness metastable microstructure shaped plates of low carbon steels. The applicability of Dual Phase steel in the structure of vehicles is huge and its production is already on a commercial scale, so the study and development of this material implies lower cost in automobile manufacturing processes. The dual phase steels DP600 and DP780 underwent tensile, hardness and metallographic analysis to evaluate and comparing its properties. The results indicate that the DP780 steel has higher strength and hardness than the DP600 steel and its microstructure consists of martensite higher fraction which accounts for the higher resistance and hardness. However, the DP600 has higher conformability to DP780 steel
Resumo:
Aluminum alloys have shown great potential for the automotive industry, especially aluminum alloys 6xxx series. This category has good mechanical strength and excellent corrosion resistance, important for the areas of construction and transport. The automotive industry has always shown great interest in the study of fatigue behavior, because structural components are subjected to cyclic and vibration loads, generating cracks and fracturing. The mechanical response depends on the material properties, applications, surface condition and microstructure. In this work was study the fatigue behavior of high cycle of machined bodies (not polished) and the effect of roughness on the fatigue life for three aluminum alloys of 6xxx series: AA6005, AA6351 and AA606, all in the T6 condition . S / N curves were made from fatigue tests in rotating bending (R = -1). The influence of roughness was studied by measuring the roughness of each specimen. Was compare the fatigue behavior of polished specimen and not polished specimens. The fractured surfaces of samples were observed by MEV, and it was observed that most of nucleation sites for fatigue crack is initiated below the surface