1000 resultados para InP material


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth of Au-catalyzed InP nanowires (NWs) by metalorganic chemical vapor deposition (MOCVD) has been studied in the temperature range of 400-510 °C and V/III ratio of 44-700. We demonstrate that minimal tapering of InP NWs can be achieved at 400 °C and V/III ratio of 350. Zinc-blende (ZB) or wurtzite (WZ) NWs is obtained depending on the growth conditions. 4K microphotoluminescence (μ-PL) studies show that emission energy is blue-shifted as growth temperature increases. By changing these growth parameters, one can tune the emission wavelength of InP NWs which is attractive for applications in developing novel optoelectronic devices. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of growth temperature and V/III ratio on the morphology and crystallographic phases of InP nanowires that are grown by metal organic chemical vapour deposition have been studied. We show that higher growth temperatures or higher V/III ratios promote the formation of wurtzite nanowires while zinc-blende nanowires are favourableat lower growth temperatures and lower V/III ratios. A schematic map of distribution of zinc-blende and wurtzite structures has been developed in the range of growth temperatures (400-510 °C) and V/III ratios (44 to 700) investigated in this study. © 2010 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use polarization-resolved and temperature-dependent photoluminescence of single zincblende (ZB) (cubic) and wurtzite (WZ) (hexagonal) InP nanowires to probe differences in selection rules and bandgaps between these two semiconductor nanostructures. The WZ nanowires exhibit a bandgap 80 meV higher in energy than the ZB nanowires. The temperature dependence of the PL is similar but not identical for the WZ and ZB nanowires. We find that ZB nanowires exhibit strong polarization parallel to the nanowire axis, while the WZ nanowires exhibit polarized emission perpendicular to the nanowire axis. This behavior is interpreted in terms of the different selection rules for WZ and ZB crystal structures. © 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the dynamics of hot charge carriers in InP nanowire ensembles containing a range of densities of zinc-blende inclusions along the otherwise wurtzite nanowires. From time-dependent photoluminescence spectra, we extract the temperature of the charge carriers as a function of time after nonresonant excitation. We find that charge-carrier temperature initially decreases rapidly with time in accordance with efficient heat transfer to lattice vibrations. However, cooling rates are subsequently slowed and are significantly lower for nanowires containing a higher density of stacking faults. We conclude that the transfer of charges across the type II interface is followed by release of additional energy to the lattice, which raises the phonon bath temperature above equilibrium and impedes the carrier cooling occurring through interaction with such phonons. These results demonstrate that type II heterointerfaces in semiconductor nanowires can sustain a hot charge-carrier distribution over an extended time period. In photovoltaic applications, such heterointerfaces may hence both reduce recombination rates and limit energy losses by allowing hot-carrier harvesting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The power-conversion efficiency of solid-state dye-sensitized solar cells can be optimized by reducing the energy offset between the highest occupied molecular orbital (HOMO) levels of dye and hole-transporting material (HTM) to minimize the loss-in-potential. Here, we report a study of three novel HTMs with HOMO levels slightly above and below the one of the commonly used HTM 2,2′,7,7′- tetrakis(N,N-di-p-methoxyphenylamino)-9,9′- spirobifluorene (spiro-OMeTAD) to systematically explore this possibility. Using transient absorption spectroscopy and employing the ruthenium based dye Z907 as sensitizer, it is shown that, despite one new HTM showing a 100% hole-transfer yield, all devices based on the new HTMs performed worse than those incorporating spiro-OMeTAD. We further demonstrate that the design of the HTM has an additional impact on the electronic density of states present at the TiO2 electrode surface and hence influences not only hole- but also electron-transfer from the sensitizer. These results provide insight into the complex influence of the HTM on charge transfer and provide guidance for the molecular design of new materials. © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An integrated 2-D model of a lithium ion battery is developed to study the mechanical stress in storage particles as a function of material properties. A previously developed coupled stress-diffusion model for storage particles is implemented in 2-D and integrated into a complete battery system. The effect of morphology on the stress and lithium concentration is studied for the case of extraction of lithium in terms of previously developed non-dimensional parameters. These non-dimensional parameters include the material properties of the storage particles in the system, among other variables. We examine particles functioning in isolation as well as in closely-packed systems. Our results show that the particle distance from the separator, in combination with the material properties of the particle, is critical in predicting the stress generated within the particle. © 2012 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a new formulation of the material point method (MPM) for solving coupled hydromechanical problems of fluid-saturated soil subjected to large deformation. A soil-pore fluid coupled MPM algorithm based on Biot's mixture theory is proposed for solving hydromechanical interaction problems that include changes in water table location with time. The accuracy of the proposed method is examined by comparing the results of the simulation of a one-dimensional consolidation test with the corresponding analytical solution. A sensitivity analysis of the MPM parameters used in the proposed method is carried out for examining the effect of the number of particles per mesh and mesh size on solution accuracy. For demonstrating the capability of the proposed method, a physical model experiment of a large-scale levee failure by seepage is simulated. The behavior of the levee model with time-dependent changes in water table matches well to the experimental observations. The mechanisms of seepage-induced failure are discussed by examining the pore-water pressures, as well as the effective stresses computed from the simulations © 2013 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variety of laser systems available to industrial laser users is growing and the choice of the correct laser for a material target application is often based on an empirical assessment. Industrial master oscillator power amplifier systems with tuneable temporal pulse shapes have now entered the market, providing enormous pulse parameter flexibility in an already crowded parameter space. In this paper, an approach is developed to design interaction parameters based on observations of material responses. Energy and material transport mechanisms are studied using pulsed digital holography, post process analysis techniques and finite-difference modelling to understand the key response mechanisms for a variety of temporal pulse envelopes incident on a silicon (1/1/1) substrate. The temporal envelope is shown to be the primary control parameter of the source term that determines the subsequent material response and the resulting surface morphology. A double peak energy-bridged temporal pulse shape designed through direct application of holographic imaging data is shown to substantially improve surface quality. © 2014 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of aquatic humic acids on the bioconcentration and acute toxicity of fenpropathrin were evaluated using grass carp, Ctenopharyngodan idellus, in laboratory freshwater systems. The results demonstrated that both bioavailability and acute toxicity decreased in the presence of aquatic humic acid 5 and 10 mg/liter. In addition, the extent of influence increased with increasing concentration of aquatic humic acid, (C) 1999 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z