990 resultados para Illinois. Office of Solid Waste and Renewable Resources


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and efficient method for the simultaneous gas chromatographic determination of ten organochlorine pesticides (alpha-HCH, beta-HCH, gamma-HCH, p,p'-DDT, o,p'-DDT, p,p'-DDD, p,p'-DDE, aldrin, endrin, and dieldrin) and six congeners of PCBs (PCB 28, 52, 118, 138, 153, and 180) in municipal solid waste compost is described. The procedure involves a solid-phase dispersion matrix using celite as dispersant sorbent, alumina as clean up sorbent and hexane-dichloromethane (7:3, v/v) mixture as eluting solvent. An additional purification step with copper was necessary to eliminate sulphur. Analysis of the sample was performed by GC-ECD. The method was validated with fortified samples at two concentration levels (0.025 and 0.05 mg kg(-1)). Average recovery ranged from 77 to 121% with relative standard deviation between 1 and 18%. The detection limits, which ranged from 0.003 to 0.01 mg kg-1, were lower than those established by the Baden-Wurttemberg directive (0.033 mg kg(-1)).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Persistent organic pollutants (POPs), organochlorine pesticides and polychlorinated biphenyls (PCBs), listed as per the Stockholm Convention (α -HCH, β -HCH, γ -HCH, p,p′-DDT, o,p′-DDT, p,p′-DDD, p,p′-DDE, aldrin, endrin, dieldrin, PCBs 28, 52, 118, 138, 153, and 180), were analyzed in municipal solid waste (MSW) compost samples from three different Brazilian composting plants located in three São Paulo State cities: Araras, Araraquara and São Paulo (Vila Leopoldinha). Quantitative and qualitative analyses were carried out using gas chromatography electron capture detection (GC-ECD) and gas chromatography mass spectrometry (GC-MS) (Ion Trap, electron impact ionization), respectively. The samples were analyzed in triplicate and the target POPs were not detected by GC-ECD. Twelve pollutants were identified in two samples when qualitative analysis (GC-MS) was used (β -HCH, γ -HCH, p,p′-DDT, o,p′-DDT, p,p′-DDD, and p,p′-DDE, PCBs 28, 118, 138, 153 and 180). The composting process has advantages such as urban solid waste reduction and landfill life-span increase, however the MSW compost quality, which can be utilized for agricultural purposes, should be evaluated and be controlled. This kind of study is the first step in making available information to answer questions regarding MSW compost for sustainable agricultural use, such as the pollutants accumulation in soil and in groundwater, and plants uptake. Copyright © Taylor & Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monomers based on plant oil derivatives bearing furan heterocycles appended through thiol-ene click chemistry were prepared and, subsequently, polymerized via a second type of click reaction, i. e. the Diels-Alder (DA) polycondensation between furan and maleimide complementary moieties. Two basic approaches were considered for these DA polymerizations, namely (i) the use of monomers with two terminal furan rings in conjunction with bismaleimides (AA + BB systems) and (ii) the use of a protected AB monomer incorporating both furan and maleimide end groups. This study clearly showed that both strategies were successful, albeit with different outcomes, in terms of the nature of the ensuing products. The application of the retro-DA reaction to these polymers confirmed their thermoreversible character, i. e. the clean-cut return to their respective starting monomers, opening the way to original macromolecular materials with interesting applications, like mendability and recyclability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study aim was to determine whether using automated side loader (ASL) trucks in higher proportions compared to other types of trucks for residential waste collection results in lower injury rates (from all causes). The primary hypothesis was that the risk of injury to workers was lower for those who work with ASL trucks than for workers who work with other types of trucks used in residential waste collection. To test this hypothesis, data were collected from one of the nation’s largest companies in the solid waste management industry. Different local operating units (i.e. facilities) in the company used different types of trucks to varying degrees, which created a special opportunity to examine refuse collection injuries and illnesses and the risk reduction potential of ASL trucks.^ The study design was ecological and analyzed end-of-year data provided by the company for calendar year 2007. During 2007, there were a total of 345 facilities which provided residential services. Each facility represented one observation.^ The dependent variable – injury and illness rate, was defined as a facility’s total case incidence rate (TCIR) recorded in accordance with federal OSHA requirements for the year 2007. The TCIR is the rate of total recordable injury and illness cases per 100 full-time workers. The independent variable, percent of ASL trucks, was calculated by dividing the number of ASL trucks by the total number of residential trucks at each facility.^ Multiple linear regression models were estimated for the impact of the percent of ASL trucks on TCIR per facility. Adjusted analyses included three covariates: median number of hours worked per week for residential workers; median number of months of work experience for residential workers; and median age of residential workers. All analyses were performed with the statistical software, Stata IC (version 11.0).^ The analyses included three approaches to classifying exposure, percent of ASL trucks. The first approach included two levels of exposure: (1) 0% and (2) >0 - <100%. The second approach included three levels of exposure: (1) 0%, (2) ≥ 1 - < 100%, and (3) 100%. The third approach included six levels of exposure to improve detection of a dose-response relationship: (1) 0%, (2) 1 to <25%, (3) 25 to <50%, (4) 50 to <75%, (5) 75 to <100%, and (6) 100%. None of the relationships between injury and illness rate and percent ASL trucks exposure levels was statistically significant (i.e., p<0.05), even after adjustment for all three covariates.^ In summary, the present study shows that there is some risk reduction impact of ASL trucks but not statistically significant. The covariates demonstrated a varied yet more modest impact on the injury and illness rate but again, none of the relationships between injury and illness rate and the covariates were statistically significant (i.e., p<0.05). However, as an ecological study, the present study also has the limitations inherent in such designs and warrants replication in an individual level cohort design. Any stronger conclusions are not suggested.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recognition of the relevance of energy, especially of the renewable energies generated by the sun, water, wind, tides, modern biomass or thermal is growing significantly in the global society based on the possibility it has to improve societies′ quality of life, to support poverty reduction and sustainable development. Renewable energy, and mainly the energy generated by large hydropower generation projects that supply most of the renewable energy consumed by developing countries, requires many technical, legal, financial and social complex processes sustained by innovations and valuable knowledge. Besides these efforts, renewable energy requires a solid infrastructure to generate and distribute the energy resources needed to solve the basic needs of society. This demands a proper construction performance to deliver the energy projects planned according to specifications and respecting environmental and social concerns, which implies the observance of sustainable construction guidelines. But construction projects are complex and demanding and frequently face time and cost overruns that may cause negative impacts on the initial planning and thus on society. The renewable energy issue and the large renewable energy power generation and distribution projects are particularly significant for developing countries and for Latin America in particular, as this region concentrates an important hydropower potential and installed capacity. Using as references the performance of Venezuelan large hydropower generation projects and the Guri dam construction, this research evaluates the tight relationship existing between sustainable construction and knowledge management and their impact to achieve sustainability goals. The knowledge management processes are proposed as a basic strategy to allow learning from successes and failures obtained in previous projects and transform the enhancement opportunites into actions to improve the performance of the renewable energy power generation and distribution projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New European directives have proposed the direct application of compost and digestate produced from municipal solid wastes as organic matter sources in agricultural soils. Therefore information about phosphorus leaching from these residues when they are applied to the soil is increasingly mportant. Leaching experiments were conducted to determine the P mobility in compost and digestate mixtures, supplying equivalent amounts to 100 kg P ha?1 to three different types of soils. The tests were performed in accordance with CEN/TS 14405:2004 analyzing the maximum dissolved reactive P and the kinetic rate in the leachate. P biowaste fractionation indicated that digestate has a higher level of available P than compost has. In contrast, P losses in leaching experiments with soil-compost mixtureswere higher than in soil-digestate mixtures. For bothwastes, therewas no correlation between disolved reactive P lost and the water soluble P.The interaction between soil and waste, the long experimentation time, and the volume of leachate obtained caused the waste?s wettability to become an influential parameter in P leaching behavior. The overall conclusion is that kinetic data analysis provides valuable information concerning the sorption mechanism that can be used for predicting the large-scale behavior of soil systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Municipality of Anchorage (MOA) is required to better manage, operate and control municipal solid waste (MSW) after the Anchorage Assembly instituted a Zero Waste Policy. Two household curbside recycling programs (CRPs), pay-as-you-throw (PAYT) and single-stream, were compared and evaluated to determine an optimal municipal solid waste diversion method for households within the MOA. The analyses find: (1) a CRP must be designed from comprehensive analysis, models and data correlation that combine demographic and psychographic variables; and (2) CRPs can be easily adjusted towards community-specific goals using technology, such as Geographic Information System (GIS) and Radio Frequency Identification (RFID). Combining resources of policy-makers, businesses, and other viable actors are necessary components to produce a sustainable, economically viable curbside recycling program.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bibliography: p. 30-31.