980 resultados para Identification algorithms
Resumo:
The introduction of molecular biology techniques, especially of DNA analysis, for human identification is a recent advance in legal medicine. Substantial effort has continuously been made in an attempt to identify cadavers and human remains after wars, socio-political problems and mass disasters. In addition, because of the social dynamics of large cities, there are always cases of missing people, as well as unidentified cadavers and human remains that are found. In the last few years, there has also been an increase in requests for exhumation of human remains in order to determine genetic relationships in civil suits and court action. The authors provide an extensive review of the literature regarding the use of this new methodology for human identification of ancient or recent bones.
Resumo:
A pictorial field guide to the 30 species of sandfly most commonly encountered in Pará State is presented, based on the easily recognised external characters of the length of the 5th palpal segment, thoracic infuscation, abdominal colour and head and body size. In most cases this allows identification to the species. In others, especially with females, it gives an indication of the species, which may then be confirmed with data from more detailed taxanomix studies. This type of field guide helps in teaching, rapid sorting of flies prior to dissection and in acquainting visitors with the variety of species present in a given area.A rapid technique for the taxonomic sorting of unmounted, freshly killed female sandflies is required, prior to the dissection of large numbers of a particular species. Such a method is useful in areas where numerous species occur in studies on natural flagellate infections, age determination and for ecological studies. With the above points in mind a pictorial field guide has been designed that enables the identification of unmounted, unmacerated specimens of the 30 more commonly encountered species of phleboto-mine sandflies (***) in Pará State, North Brazil. It is based on the easily recognised external characters of the length of the 5th palpal segment, thoracic infuscation, ad-dominal colour and proboscis and body size.Taxonomy of male phlebotomine sandflies is based on the structure of the genitalia and, as most of this is external, a wholly external character key is readily made. Female taxonomy, however, is based on the internal character of the cibarium, pharynx and sperma thecae. In order to produce an external character key we therefore return to an unso phisticated "phlebotometry" (see Martins et al., 1978 p. 3 for review), using relative lengths of the proboscis, palpal segments and body, along with the degree of infuscation. Ihis idea is not new; indeed many sandfly specialists presently use external characters to separate certain species (H. Fraiha, R. P. Lane, P. D. Ready, D. G. Young and R. D. Ward personal communications 1983 & 1984).A key used to separate five anthropophillic sandflies by Biagi (1966), in Mexico, was based mainly on palpal segment length and infuscation. Floch and Abonnenc (1952) stressed the use of relative lengths of palpal segments in their keys to the sandflies of French Guiana, and four members of the shannoni group have been similarly separated according to the degree of infuscation by Morales et al. (1982). The use of thoracic infuscation as a reliable character seems to be gaining favour, having been used by young & Fairchild (1974) and Ready & Fraiha (1981). Indeed Chariotis 1974) showed the usefulness of thoracic infuscation to sepenate 7 anthropophillic species, during studies onvesicular stomatitis in Panama. Identification using external characters is essential for work on viral isolations from sandflies, where bulk samples of whole sandflies are used.Perhaps the major advantage of a simple visual guide is for teaching purposes. Technical staff in this lnstitute are able to identify most of the species they encounter without having to use the standard, more unwieldly (and in many cases unavailable) internal character keys, and the guides presented below have allowed rapid species sorting prior to the dissection of sandflies in our leismaniasis study areas (Ryan et at. ,1985).
Resumo:
Ship tracking systems allow Maritime Organizations that are concerned with the Safety at Sea to obtain information on the current location and route of merchant vessels. Thanks to Space technology in recent years the geographical coverage of the ship tracking platforms has increased significantly, from radar based near-shore traffic monitoring towards a worldwide picture of the maritime traffic situation. The long-range tracking systems currently in operations allow the storage of ship position data over many years: a valuable source of knowledge about the shipping routes between different ocean regions. The outcome of this Master project is a software prototype for the estimation of the most operated shipping route between any two geographical locations. The analysis is based on the historical ship positions acquired with long-range tracking systems. The proposed approach makes use of a Genetic Algorithm applied on a training set of relevant ship positions extracted from the long-term storage tracking database of the European Maritime Safety Agency (EMSA). The analysis of some representative shipping routes is presented and the quality of the results and their operational applications are assessed by a Maritime Safety expert.
Resumo:
The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the paper. The authors would like to thank Dr. Elaine DeBock for reviewing the manuscript.
Resumo:
Traffic Engineering (TE) approaches are increasingly impor- tant in network management to allow an optimized configuration and resource allocation. In link-state routing, the task of setting appropriate weights to the links is both an important and a challenging optimization task. A number of different approaches has been put forward towards this aim, including the successful use of Evolutionary Algorithms (EAs). In this context, this work addresses the evaluation of three distinct EAs, a single and two multi-objective EAs, in two tasks related to weight setting optimization towards optimal intra-domain routing, knowing the network topology and aggregated traffic demands and seeking to mini- mize network congestion. In both tasks, the optimization considers sce- narios where there is a dynamic alteration in the state of the system, in the first considering changes in the traffic demand matrices and in the latter considering the possibility of link failures. The methods will, thus, need to simultaneously optimize for both conditions, the normal and the altered one, following a preventive TE approach towards robust configurations. Since this can be formulated as a bi-objective function, the use of multi-objective EAs, such as SPEA2 and NSGA-II, came nat- urally, being those compared to a single-objective EA. The results show a remarkable behavior of NSGA-II in all proposed tasks scaling well for harder instances, and thus presenting itself as the most promising option for TE in these scenarios.
Resumo:
Immune systems have been used in the last years to inspire approaches for several computational problems. This paper focus on behavioural biometric authentication algorithms’ accuracy enhancement by using them more than once and with different thresholds in order to first simulate the protection provided by the skin and then look for known outside entities, like lymphocytes do. The paper describes the principles that support the application of this approach to Keystroke Dynamics, an authentication biometric technology that decides on the legitimacy of a user based on his typing pattern captured on he enters the username and/or the password and, as a proof of concept, the accuracy levels of one keystroke dynamics algorithm when applied to five legitimate users of a system both in the traditional and in the immune inspired approaches are calculated and the obtained results are compared.
Resumo:
The present paper focuses on a damage identification method based on the use of the second order spectral properties of the nodal response processes. The explicit dependence on the frequency content of the outputs power spectral densities makes them suitable for damage detection and localization. The well-known case study of the Z24 Bridge in Switzerland is chosen to apply and further investigate this technique with the aim of validating its reliability. Numerical simulations of the dynamic response of the structure subjected to different types of excitation are carried out to assess the variability of the spectrum-driven method with respect to both type and position of the excitation sources. The simulated data obtained from random vibrations, impulse, ramp and shaking forces, allowed to build the power spectrum matrix from which the main eigenparameters of reference and damage scenarios are extracted. Afterwards, complex eigenvectors and real eigenvalues are properly weighed and combined and a damage index based on the difference between spectral modes is computed to pinpoint the damage. Finally, a group of vibration-based damage identification methods are selected from the literature to compare the results obtained and to evaluate the performance of the spectral index.
Resumo:
In Maternity Care, a quick decision has to be made about the most suitable delivery type for the current patient. Guidelines are followed by physicians to support that decision; however, those practice recommendations are limited and underused. In the last years, caesarean delivery has been pursued in over 28% of pregnancies, and other operative techniques regarding specific problems have also been excessively employed. This study identifies obstetric and pregnancy factors that can be used to predict the most appropriate delivery technique, through the induction of data mining models using real data gathered in the perinatal and maternal care unit of Centro Hospitalar of Oporto (CHP). Predicting the type of birth envisions high-quality services, increased safety and effectiveness of specific practices to help guide maternity care decisions and facilitate optimal outcomes in mother and child. In this work was possible to acquire good results, achieving sensitivity and specificity values of 90.11% and 80.05%, respectively, providing the CHP with a model capable of correctly identify caesarean sections and vaginal deliveries.
Resumo:
PhD thesis in Bioengineering
Resumo:
The monitoring data collected during tunnel excavation can be used in inverse analysis procedures in order to identify more realistic geomechanical parameters that can increase the knowledge about the interested formations. These more realistic parameters can be used in real time to adapt the project to the real structure in situ behaviour. However, monitoring plans are normally designed for safety assessment and not especially for the purpose of inverse analysis. In fact, there is a lack of knowledge about what types and quantity of measurements are needed to succeed in identifying the parameters of interest. Also, the optimisation algorithm chosen for the identification procedure may be important for this matter. In this work, this problem is addressed using a theoretical case with which a thorough parametric study was carried out using two optimisation algorithms based on different calculation paradigms, namely a conventional gradient-based algorithm and an evolution strategy algorithm. Calculations were carried for different sets of parameters to identify several combinations of types and amount of monitoring data. The results clearly show the high importance of the available monitoring data and the chosen algorithm for the success rate of the inverse analysis process.
Resumo:
The use of chemical analysis of microbial components, including proteins, became an important achievement in the 80’s of the last century to the microbial identification. This led a more objective microbial identification scheme, called chemotaxonomy, and the analytical tools used in the field are mainly 1D/2D gel electrophoresis, spectrophotometry, high-performance liquid chromatography, gas chromatography, and combined gas chromatography-mass spectrometry. The Edman degradation reaction was also applied to peptides sequence giving important insights to the microbial identification. The rapid development of these techniques, in association with knowledge generated by DNA sequencing and phylogeny based on rRNA gene and housekeeping genes sequences, boosted the microbial identification to an unparalleled scale. The recent results of mass spectrometry (MS), like Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight (MALDI-TOF), for rapid and reliable microbial identification showed considerable promise. In addition, the technique is rapid, reliable and inexpensive in terms of labour and consumables when compared with other biological techniques. At present, MALDI-TOF MS adds an additional step for polyphasic identification which is essential when there is a paucity of characters or high DNA homologies for delimiting very close related species. The full impact of this approach is now being appreciated when more diverse species are studied in detail and successfully identified. However, even with the best polyphasic system, identification of some taxa remains time-consuming and determining what represents a species remains subjective. The possibilities opened with new and even more robust mass spectrometers combined with sound and reliable databases allow not only the microbial identification based on the proteome fingerprinting but also include de novo specific proteins sequencing as additional step. These approaches are pushing the boundaries in the microbial identification field.
Resumo:
The use of chemical analysis of microbial components, including proteins, became an important achievement in the 80’s of the last century to the microbial identification. This led a more objective microbial identification scheme, called chemotaxonomy, and the analytical tools used in the field are mainly 1D/2D gel electrophoresis, spectrophotometry, high-performance liquid chromatography, gas chromatography, and combined gas chromatography-mass spectrometry. The Edman degradation reaction was also applied to peptides sequence giving important insights to the microbial identification. The rapid development of these techniques, in association with knowledge generated by DNA sequencing and phylogeny based on rRNA gene and housekeeping genes sequences, boosted the microbial identification to an unparalleled scale. The recent results of mass spectrometry (MS), like Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight (MALDI-TOF), for rapid and reliable microbial identification showed considerable promise. In addition, the technique is rapid, reliable and inexpensive in terms of labour and consumables when compared with other biological techniques. At present, MALDI-TOF MS adds an additional step for polyphasic identification which is essential when there is a paucity of characters or high DNA homologies for delimiting very close related species. The full impact of this approach is now being appreciated when more diverse species are studied in detail and successfully identified. However, even with the best polyphasic system, identification of some taxa remains time-consuming and determining what represents a species remains subjective. The possibilities opened with new and even more robust mass spectrometers combined with sound and reliable databases allow not only the microbial identification based on the proteome fingerprinting but also include de novo specific proteins sequencing as additional step. These approaches are pushing the boundaries in the microbial identification field.
Resumo:
Brazil is one the largest producers and exporters of food commodities in the world. The evaluation of fungi capable of spoilage and the production mycotoxins in these commodities is an important issue that can be of help in bioeconomic development. The present work aimed to identify fungi of the genus Aspergillus section Flavi isolated from different food commodities in Brazil. Thirty-five fungal isolates belonging to the section Flavi were identified and characterised. Different classic phenotypic and genotypic methodologies were used, as well as a novel approach based on proteomic profiles produced by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Type or reference strains for each taxonomic group were included in this study. Three isolates that presented discordant identification patterns were further analysed using the internal transcribed spacer (ITS) region and calmodulin gene sequences. The data obtained from the phenotypic and spectral analyses divide the isolates into three groups, corresponding to taxa closely related to Aspergillus flavus, Aspergillus parasiticus, and Aspergillus tamarii. Final polyphasic fungal identification was achieved by joining data from molecular analyses, classical morphology, and biochemical and proteomic profiles generated by MALDI-TOF MS.
Resumo:
Apresentação efetuada na MicroBiotec’15